Abstract

Fringe projection profilometry (FPP) has been widely used for three-dimensional reconstruction, surface measurement, and reverse engineering. However, FPP is prone to overexposure if objects have a wide range of reflectance. In this paper, we propose a dynamic projection theory based on FPP to rapidly measure the overexposed region with an attempt to conquer this challenge. This theory modifies the projected fringe image to the next better measurement based on the feedback provided by the previously captured image intensity. Experiments demonstrated that the number of overexposed points can be drastically reduced after one or two iterations. Compared with the state-of-the-art methods, our proposed dynamic projection theory measures the overexposed region quickly and effectively and, thus, broadens the applications of FPP.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement

Hui Lin, Jian Gao, Qing Mei, Yunbo He, Junxiu Liu, and Xingjin Wang
Opt. Express 24(7) 7703-7718 (2016)

Depth-driven variable-frequency sinusoidal fringe pattern for accuracy improvement in fringe projection profilometry

Gang Rao, Libin Song, Song Zhang, Xiangdong Yang, Ken Chen, and Jing Xu
Opt. Express 26(16) 19986-20008 (2018)

Reconstruction method for fringe projection profilometry based on light beams

Xuexing Li, Zhijiang Zhang, and Chen Yang
Appl. Opt. 55(34) 9895-9906 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription