Abstract

We present the theoretical background and analytical equations for calculating spectral reflectance and transmittance factors for plant leaves from data collected by a field spectroradiometer attached to a double-integrating sphere. The sphere constants required for the calculations are derived from measurements of an empty sample port and a diffuse reflectance panel. The new method is applied in measuring the spectra of leaves belonging to 13 tree species. The greatest advantages of a double-sphere system compared with the conventional single-sphere substitution method is the speed of measurements, ease of operation, and increased portability and field-ruggedness.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
An Integrating Sphere System for Measuring Average Reflectance and Transmittance

John M. Davies and Walter Zagieboylo
Appl. Opt. 4(2) 167-174 (1965)

Transmittance measurements in the integrating sphere

Jeffrey Kessel
Appl. Opt. 25(16) 2752-2756 (1986)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Gates, H. J. Keegan, J. C. Schleter, and V. R. Weidner, “Spectral properties of plants,” Appl. Opt. 4, 11–20 (1965).
    [Crossref]
  2. D. G. Goebel, “Generalized integrating-sphere theory,” Appl. Opt. 6, 125–128 (1967).
    [Crossref]
  3. C. S. T. Daughtry, L. L. Biehl, and K. J. Ranson, “A new technique to measure the spectral properties of conifer needles,” Remote Sens. Environ. 27, 81–91 (1989).
    [Crossref]
  4. L. Yáñez-Rausell, M. E. Schaepman, J. G. P. W. Clevers, and Z. Malenovský, “Minimizing measurement uncertainties of coniferous needle-leaf optical properties, Part I: methodological review,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7, 399–405 (2014).
    [Crossref]
  5. J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, and M. J. C. van Gemert, “Two integrating spheres with an intervening scattering sample,” J. Opt. Soc. Am. A 9, 621–631 (1992).
    [Crossref]
  6. J. W. Pickering, S. Prahl, N. van Wieringen, J. F. Beek, H. J. Sterenborg, and M. J. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
    [Crossref]
  7. J.-B. Féret, C. François, A. Gitelson, G. P. Asner, K. M. Barry, C. Panigada, A. D. Richardson, and S. Jacquemoud, “Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling,” Remote Sens. Environ. 115, 2742–2750 (2011).
    [Crossref]
  8. P. Lukeš, P. Stenberg, M. Rautiainen, M. Mõttus, and K. M. Vanhatalo, “Optical properties of leaves and needles for boreal tree species in Europe,” Remote Sens. Lett. 4, 667–676 (2013).
    [Crossref]
  9. G. le Maire, C. François, K. Soudani, D. Berveiller, J.-Y. Pontailler, N. Bréda, H. Genet, H. Davi, and E. Dufrêne, “Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass,” Remote Sens. Environ. 112, 3846–3864 (2008).
    [Crossref]
  10. M. Mõttus, M. Sulev, and L. Hallik, “Seasonal course of the spectral properties of Alder and Birch leaves,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7, 2496–2505 (2014).
    [Crossref]
  11. K. F. Carr, “Integrating sphere theory and applications. Part I: integrating sphere theory and design,” Surf. Coat. Int. 80, 380–385 (1997).
    [Crossref]
  12. H. M. Noda, T. Motohka, K. Murakami, H. Muraoka, and K. N. Nasahara, “Reflectance and transmittance spectra of leaves and shoots of 22 vascular plant species and reflectance spectra of trunks and branches of 12 tree species in Japan,” Ecol. Res. 29, 111 (2014).
    [Crossref]
  13. B. Hosgood, S. Jacquemoud, G. Andreoli, J. Verdebout, A. Pedrini, and G. Schmuck, “Leaf Optical Properties Experiment 93 (LOPEX93),” Revised report (JRC, 1995).
  14. E. Middleton and J. Sullivan, “BOREAS TE-10 leaf optical properties for SSA species. Data set,” 2000. Available online: http://www.daac.ornl.gov.
    [Crossref]
  15. A. K. Knapp and G. A. Carter, “Variability in leaf optical properties among 26 species from a broad range of habitats,” Am. J. Bot. 85, 940–946 (1998).
    [Crossref]
  16. G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing-definitions and case studies,” Remote Sens. Environ. 103, 27–42 (2006).
    [Crossref]
  17. H. L. Gorton, C. R. Brodersen, W. E. Williams, and T. C. Vogelmann, “Measurement of the optical properties of leaves under diffuse light,” Photochem. Photobiol. 86, 1076–1083 (2010).
    [Crossref]
  18. Y. Knyazikhin, M. A. Schull, P. Stenberg, M. Mõttus, M. Rautiainen, Y. Yang, A. L. Marshak, P. Latorre Carmona, R. K. Kaufmann, P. Lewis, M. I. Disney, V. Vanderbilt, A. B. Davis, F. Baret, S. Jacquemoud, A. Lyapustin, and R. B. Myneni, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
    [Crossref]
  19. Y. Knyazikhin, M. A. Schull, L. Xu, R. B. Myneni, and A. Samanta, “Canopy spectral invariants. Part 1: a new concept in remote sensing of vegetation,” J. Quant. Spectrosc. Radiat. Transfer 112, 727–735 (2011).
    [Crossref]
  20. ASD, Integrating Sphere User Manual Rev. A (ASD Inc., 2008).

2014 (3)

L. Yáñez-Rausell, M. E. Schaepman, J. G. P. W. Clevers, and Z. Malenovský, “Minimizing measurement uncertainties of coniferous needle-leaf optical properties, Part I: methodological review,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7, 399–405 (2014).
[Crossref]

M. Mõttus, M. Sulev, and L. Hallik, “Seasonal course of the spectral properties of Alder and Birch leaves,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7, 2496–2505 (2014).
[Crossref]

H. M. Noda, T. Motohka, K. Murakami, H. Muraoka, and K. N. Nasahara, “Reflectance and transmittance spectra of leaves and shoots of 22 vascular plant species and reflectance spectra of trunks and branches of 12 tree species in Japan,” Ecol. Res. 29, 111 (2014).
[Crossref]

2013 (2)

Y. Knyazikhin, M. A. Schull, P. Stenberg, M. Mõttus, M. Rautiainen, Y. Yang, A. L. Marshak, P. Latorre Carmona, R. K. Kaufmann, P. Lewis, M. I. Disney, V. Vanderbilt, A. B. Davis, F. Baret, S. Jacquemoud, A. Lyapustin, and R. B. Myneni, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

P. Lukeš, P. Stenberg, M. Rautiainen, M. Mõttus, and K. M. Vanhatalo, “Optical properties of leaves and needles for boreal tree species in Europe,” Remote Sens. Lett. 4, 667–676 (2013).
[Crossref]

2011 (2)

Y. Knyazikhin, M. A. Schull, L. Xu, R. B. Myneni, and A. Samanta, “Canopy spectral invariants. Part 1: a new concept in remote sensing of vegetation,” J. Quant. Spectrosc. Radiat. Transfer 112, 727–735 (2011).
[Crossref]

J.-B. Féret, C. François, A. Gitelson, G. P. Asner, K. M. Barry, C. Panigada, A. D. Richardson, and S. Jacquemoud, “Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling,” Remote Sens. Environ. 115, 2742–2750 (2011).
[Crossref]

2010 (1)

H. L. Gorton, C. R. Brodersen, W. E. Williams, and T. C. Vogelmann, “Measurement of the optical properties of leaves under diffuse light,” Photochem. Photobiol. 86, 1076–1083 (2010).
[Crossref]

2008 (1)

G. le Maire, C. François, K. Soudani, D. Berveiller, J.-Y. Pontailler, N. Bréda, H. Genet, H. Davi, and E. Dufrêne, “Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass,” Remote Sens. Environ. 112, 3846–3864 (2008).
[Crossref]

2006 (1)

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing-definitions and case studies,” Remote Sens. Environ. 103, 27–42 (2006).
[Crossref]

1998 (1)

A. K. Knapp and G. A. Carter, “Variability in leaf optical properties among 26 species from a broad range of habitats,” Am. J. Bot. 85, 940–946 (1998).
[Crossref]

1997 (1)

K. F. Carr, “Integrating sphere theory and applications. Part I: integrating sphere theory and design,” Surf. Coat. Int. 80, 380–385 (1997).
[Crossref]

1993 (1)

1992 (1)

1989 (1)

C. S. T. Daughtry, L. L. Biehl, and K. J. Ranson, “A new technique to measure the spectral properties of conifer needles,” Remote Sens. Environ. 27, 81–91 (1989).
[Crossref]

1967 (1)

1965 (1)

Andreoli, G.

B. Hosgood, S. Jacquemoud, G. Andreoli, J. Verdebout, A. Pedrini, and G. Schmuck, “Leaf Optical Properties Experiment 93 (LOPEX93),” Revised report (JRC, 1995).

Asner, G. P.

J.-B. Féret, C. François, A. Gitelson, G. P. Asner, K. M. Barry, C. Panigada, A. D. Richardson, and S. Jacquemoud, “Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling,” Remote Sens. Environ. 115, 2742–2750 (2011).
[Crossref]

Baret, F.

Y. Knyazikhin, M. A. Schull, P. Stenberg, M. Mõttus, M. Rautiainen, Y. Yang, A. L. Marshak, P. Latorre Carmona, R. K. Kaufmann, P. Lewis, M. I. Disney, V. Vanderbilt, A. B. Davis, F. Baret, S. Jacquemoud, A. Lyapustin, and R. B. Myneni, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Barry, K. M.

J.-B. Féret, C. François, A. Gitelson, G. P. Asner, K. M. Barry, C. Panigada, A. D. Richardson, and S. Jacquemoud, “Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling,” Remote Sens. Environ. 115, 2742–2750 (2011).
[Crossref]

Beek, J. F.

Berveiller, D.

G. le Maire, C. François, K. Soudani, D. Berveiller, J.-Y. Pontailler, N. Bréda, H. Genet, H. Davi, and E. Dufrêne, “Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass,” Remote Sens. Environ. 112, 3846–3864 (2008).
[Crossref]

Biehl, L. L.

C. S. T. Daughtry, L. L. Biehl, and K. J. Ranson, “A new technique to measure the spectral properties of conifer needles,” Remote Sens. Environ. 27, 81–91 (1989).
[Crossref]

Bréda, N.

G. le Maire, C. François, K. Soudani, D. Berveiller, J.-Y. Pontailler, N. Bréda, H. Genet, H. Davi, and E. Dufrêne, “Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass,” Remote Sens. Environ. 112, 3846–3864 (2008).
[Crossref]

Brodersen, C. R.

H. L. Gorton, C. R. Brodersen, W. E. Williams, and T. C. Vogelmann, “Measurement of the optical properties of leaves under diffuse light,” Photochem. Photobiol. 86, 1076–1083 (2010).
[Crossref]

Carr, K. F.

K. F. Carr, “Integrating sphere theory and applications. Part I: integrating sphere theory and design,” Surf. Coat. Int. 80, 380–385 (1997).
[Crossref]

Carter, G. A.

A. K. Knapp and G. A. Carter, “Variability in leaf optical properties among 26 species from a broad range of habitats,” Am. J. Bot. 85, 940–946 (1998).
[Crossref]

Clevers, J. G. P. W.

L. Yáñez-Rausell, M. E. Schaepman, J. G. P. W. Clevers, and Z. Malenovský, “Minimizing measurement uncertainties of coniferous needle-leaf optical properties, Part I: methodological review,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7, 399–405 (2014).
[Crossref]

Dangel, S.

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing-definitions and case studies,” Remote Sens. Environ. 103, 27–42 (2006).
[Crossref]

Daughtry, C. S. T.

C. S. T. Daughtry, L. L. Biehl, and K. J. Ranson, “A new technique to measure the spectral properties of conifer needles,” Remote Sens. Environ. 27, 81–91 (1989).
[Crossref]

Davi, H.

G. le Maire, C. François, K. Soudani, D. Berveiller, J.-Y. Pontailler, N. Bréda, H. Genet, H. Davi, and E. Dufrêne, “Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass,” Remote Sens. Environ. 112, 3846–3864 (2008).
[Crossref]

Davis, A. B.

Y. Knyazikhin, M. A. Schull, P. Stenberg, M. Mõttus, M. Rautiainen, Y. Yang, A. L. Marshak, P. Latorre Carmona, R. K. Kaufmann, P. Lewis, M. I. Disney, V. Vanderbilt, A. B. Davis, F. Baret, S. Jacquemoud, A. Lyapustin, and R. B. Myneni, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Disney, M. I.

Y. Knyazikhin, M. A. Schull, P. Stenberg, M. Mõttus, M. Rautiainen, Y. Yang, A. L. Marshak, P. Latorre Carmona, R. K. Kaufmann, P. Lewis, M. I. Disney, V. Vanderbilt, A. B. Davis, F. Baret, S. Jacquemoud, A. Lyapustin, and R. B. Myneni, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Dufrêne, E.

G. le Maire, C. François, K. Soudani, D. Berveiller, J.-Y. Pontailler, N. Bréda, H. Genet, H. Davi, and E. Dufrêne, “Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass,” Remote Sens. Environ. 112, 3846–3864 (2008).
[Crossref]

Féret, J.-B.

J.-B. Féret, C. François, A. Gitelson, G. P. Asner, K. M. Barry, C. Panigada, A. D. Richardson, and S. Jacquemoud, “Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling,” Remote Sens. Environ. 115, 2742–2750 (2011).
[Crossref]

François, C.

J.-B. Féret, C. François, A. Gitelson, G. P. Asner, K. M. Barry, C. Panigada, A. D. Richardson, and S. Jacquemoud, “Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling,” Remote Sens. Environ. 115, 2742–2750 (2011).
[Crossref]

G. le Maire, C. François, K. Soudani, D. Berveiller, J.-Y. Pontailler, N. Bréda, H. Genet, H. Davi, and E. Dufrêne, “Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass,” Remote Sens. Environ. 112, 3846–3864 (2008).
[Crossref]

Gates, D. M.

Genet, H.

G. le Maire, C. François, K. Soudani, D. Berveiller, J.-Y. Pontailler, N. Bréda, H. Genet, H. Davi, and E. Dufrêne, “Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass,” Remote Sens. Environ. 112, 3846–3864 (2008).
[Crossref]

Gitelson, A.

J.-B. Féret, C. François, A. Gitelson, G. P. Asner, K. M. Barry, C. Panigada, A. D. Richardson, and S. Jacquemoud, “Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling,” Remote Sens. Environ. 115, 2742–2750 (2011).
[Crossref]

Goebel, D. G.

Gorton, H. L.

H. L. Gorton, C. R. Brodersen, W. E. Williams, and T. C. Vogelmann, “Measurement of the optical properties of leaves under diffuse light,” Photochem. Photobiol. 86, 1076–1083 (2010).
[Crossref]

Hallik, L.

M. Mõttus, M. Sulev, and L. Hallik, “Seasonal course of the spectral properties of Alder and Birch leaves,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7, 2496–2505 (2014).
[Crossref]

Hosgood, B.

B. Hosgood, S. Jacquemoud, G. Andreoli, J. Verdebout, A. Pedrini, and G. Schmuck, “Leaf Optical Properties Experiment 93 (LOPEX93),” Revised report (JRC, 1995).

Jacquemoud, S.

Y. Knyazikhin, M. A. Schull, P. Stenberg, M. Mõttus, M. Rautiainen, Y. Yang, A. L. Marshak, P. Latorre Carmona, R. K. Kaufmann, P. Lewis, M. I. Disney, V. Vanderbilt, A. B. Davis, F. Baret, S. Jacquemoud, A. Lyapustin, and R. B. Myneni, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

J.-B. Féret, C. François, A. Gitelson, G. P. Asner, K. M. Barry, C. Panigada, A. D. Richardson, and S. Jacquemoud, “Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling,” Remote Sens. Environ. 115, 2742–2750 (2011).
[Crossref]

B. Hosgood, S. Jacquemoud, G. Andreoli, J. Verdebout, A. Pedrini, and G. Schmuck, “Leaf Optical Properties Experiment 93 (LOPEX93),” Revised report (JRC, 1995).

Kaufmann, R. K.

Y. Knyazikhin, M. A. Schull, P. Stenberg, M. Mõttus, M. Rautiainen, Y. Yang, A. L. Marshak, P. Latorre Carmona, R. K. Kaufmann, P. Lewis, M. I. Disney, V. Vanderbilt, A. B. Davis, F. Baret, S. Jacquemoud, A. Lyapustin, and R. B. Myneni, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Keegan, H. J.

Knapp, A. K.

A. K. Knapp and G. A. Carter, “Variability in leaf optical properties among 26 species from a broad range of habitats,” Am. J. Bot. 85, 940–946 (1998).
[Crossref]

Knyazikhin, Y.

Y. Knyazikhin, M. A. Schull, P. Stenberg, M. Mõttus, M. Rautiainen, Y. Yang, A. L. Marshak, P. Latorre Carmona, R. K. Kaufmann, P. Lewis, M. I. Disney, V. Vanderbilt, A. B. Davis, F. Baret, S. Jacquemoud, A. Lyapustin, and R. B. Myneni, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Y. Knyazikhin, M. A. Schull, L. Xu, R. B. Myneni, and A. Samanta, “Canopy spectral invariants. Part 1: a new concept in remote sensing of vegetation,” J. Quant. Spectrosc. Radiat. Transfer 112, 727–735 (2011).
[Crossref]

Latorre Carmona, P.

Y. Knyazikhin, M. A. Schull, P. Stenberg, M. Mõttus, M. Rautiainen, Y. Yang, A. L. Marshak, P. Latorre Carmona, R. K. Kaufmann, P. Lewis, M. I. Disney, V. Vanderbilt, A. B. Davis, F. Baret, S. Jacquemoud, A. Lyapustin, and R. B. Myneni, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

le Maire, G.

G. le Maire, C. François, K. Soudani, D. Berveiller, J.-Y. Pontailler, N. Bréda, H. Genet, H. Davi, and E. Dufrêne, “Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass,” Remote Sens. Environ. 112, 3846–3864 (2008).
[Crossref]

Lewis, P.

Y. Knyazikhin, M. A. Schull, P. Stenberg, M. Mõttus, M. Rautiainen, Y. Yang, A. L. Marshak, P. Latorre Carmona, R. K. Kaufmann, P. Lewis, M. I. Disney, V. Vanderbilt, A. B. Davis, F. Baret, S. Jacquemoud, A. Lyapustin, and R. B. Myneni, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Lukeš, P.

P. Lukeš, P. Stenberg, M. Rautiainen, M. Mõttus, and K. M. Vanhatalo, “Optical properties of leaves and needles for boreal tree species in Europe,” Remote Sens. Lett. 4, 667–676 (2013).
[Crossref]

Lyapustin, A.

Y. Knyazikhin, M. A. Schull, P. Stenberg, M. Mõttus, M. Rautiainen, Y. Yang, A. L. Marshak, P. Latorre Carmona, R. K. Kaufmann, P. Lewis, M. I. Disney, V. Vanderbilt, A. B. Davis, F. Baret, S. Jacquemoud, A. Lyapustin, and R. B. Myneni, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Malenovský, Z.

L. Yáñez-Rausell, M. E. Schaepman, J. G. P. W. Clevers, and Z. Malenovský, “Minimizing measurement uncertainties of coniferous needle-leaf optical properties, Part I: methodological review,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7, 399–405 (2014).
[Crossref]

Marshak, A. L.

Y. Knyazikhin, M. A. Schull, P. Stenberg, M. Mõttus, M. Rautiainen, Y. Yang, A. L. Marshak, P. Latorre Carmona, R. K. Kaufmann, P. Lewis, M. I. Disney, V. Vanderbilt, A. B. Davis, F. Baret, S. Jacquemoud, A. Lyapustin, and R. B. Myneni, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Martonchik, J. V.

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing-definitions and case studies,” Remote Sens. Environ. 103, 27–42 (2006).
[Crossref]

Moes, C. J. M.

Motohka, T.

H. M. Noda, T. Motohka, K. Murakami, H. Muraoka, and K. N. Nasahara, “Reflectance and transmittance spectra of leaves and shoots of 22 vascular plant species and reflectance spectra of trunks and branches of 12 tree species in Japan,” Ecol. Res. 29, 111 (2014).
[Crossref]

Mõttus, M.

M. Mõttus, M. Sulev, and L. Hallik, “Seasonal course of the spectral properties of Alder and Birch leaves,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7, 2496–2505 (2014).
[Crossref]

P. Lukeš, P. Stenberg, M. Rautiainen, M. Mõttus, and K. M. Vanhatalo, “Optical properties of leaves and needles for boreal tree species in Europe,” Remote Sens. Lett. 4, 667–676 (2013).
[Crossref]

Y. Knyazikhin, M. A. Schull, P. Stenberg, M. Mõttus, M. Rautiainen, Y. Yang, A. L. Marshak, P. Latorre Carmona, R. K. Kaufmann, P. Lewis, M. I. Disney, V. Vanderbilt, A. B. Davis, F. Baret, S. Jacquemoud, A. Lyapustin, and R. B. Myneni, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Murakami, K.

H. M. Noda, T. Motohka, K. Murakami, H. Muraoka, and K. N. Nasahara, “Reflectance and transmittance spectra of leaves and shoots of 22 vascular plant species and reflectance spectra of trunks and branches of 12 tree species in Japan,” Ecol. Res. 29, 111 (2014).
[Crossref]

Muraoka, H.

H. M. Noda, T. Motohka, K. Murakami, H. Muraoka, and K. N. Nasahara, “Reflectance and transmittance spectra of leaves and shoots of 22 vascular plant species and reflectance spectra of trunks and branches of 12 tree species in Japan,” Ecol. Res. 29, 111 (2014).
[Crossref]

Myneni, R. B.

Y. Knyazikhin, M. A. Schull, P. Stenberg, M. Mõttus, M. Rautiainen, Y. Yang, A. L. Marshak, P. Latorre Carmona, R. K. Kaufmann, P. Lewis, M. I. Disney, V. Vanderbilt, A. B. Davis, F. Baret, S. Jacquemoud, A. Lyapustin, and R. B. Myneni, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Y. Knyazikhin, M. A. Schull, L. Xu, R. B. Myneni, and A. Samanta, “Canopy spectral invariants. Part 1: a new concept in remote sensing of vegetation,” J. Quant. Spectrosc. Radiat. Transfer 112, 727–735 (2011).
[Crossref]

Nasahara, K. N.

H. M. Noda, T. Motohka, K. Murakami, H. Muraoka, and K. N. Nasahara, “Reflectance and transmittance spectra of leaves and shoots of 22 vascular plant species and reflectance spectra of trunks and branches of 12 tree species in Japan,” Ecol. Res. 29, 111 (2014).
[Crossref]

Noda, H. M.

H. M. Noda, T. Motohka, K. Murakami, H. Muraoka, and K. N. Nasahara, “Reflectance and transmittance spectra of leaves and shoots of 22 vascular plant species and reflectance spectra of trunks and branches of 12 tree species in Japan,” Ecol. Res. 29, 111 (2014).
[Crossref]

Painter, T. H.

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing-definitions and case studies,” Remote Sens. Environ. 103, 27–42 (2006).
[Crossref]

Panigada, C.

J.-B. Féret, C. François, A. Gitelson, G. P. Asner, K. M. Barry, C. Panigada, A. D. Richardson, and S. Jacquemoud, “Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling,” Remote Sens. Environ. 115, 2742–2750 (2011).
[Crossref]

Pedrini, A.

B. Hosgood, S. Jacquemoud, G. Andreoli, J. Verdebout, A. Pedrini, and G. Schmuck, “Leaf Optical Properties Experiment 93 (LOPEX93),” Revised report (JRC, 1995).

Pickering, J. W.

Pontailler, J.-Y.

G. le Maire, C. François, K. Soudani, D. Berveiller, J.-Y. Pontailler, N. Bréda, H. Genet, H. Davi, and E. Dufrêne, “Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass,” Remote Sens. Environ. 112, 3846–3864 (2008).
[Crossref]

Prahl, S.

Prahl, S. A.

Ranson, K. J.

C. S. T. Daughtry, L. L. Biehl, and K. J. Ranson, “A new technique to measure the spectral properties of conifer needles,” Remote Sens. Environ. 27, 81–91 (1989).
[Crossref]

Rautiainen, M.

P. Lukeš, P. Stenberg, M. Rautiainen, M. Mõttus, and K. M. Vanhatalo, “Optical properties of leaves and needles for boreal tree species in Europe,” Remote Sens. Lett. 4, 667–676 (2013).
[Crossref]

Y. Knyazikhin, M. A. Schull, P. Stenberg, M. Mõttus, M. Rautiainen, Y. Yang, A. L. Marshak, P. Latorre Carmona, R. K. Kaufmann, P. Lewis, M. I. Disney, V. Vanderbilt, A. B. Davis, F. Baret, S. Jacquemoud, A. Lyapustin, and R. B. Myneni, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Richardson, A. D.

J.-B. Féret, C. François, A. Gitelson, G. P. Asner, K. M. Barry, C. Panigada, A. D. Richardson, and S. Jacquemoud, “Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling,” Remote Sens. Environ. 115, 2742–2750 (2011).
[Crossref]

Samanta, A.

Y. Knyazikhin, M. A. Schull, L. Xu, R. B. Myneni, and A. Samanta, “Canopy spectral invariants. Part 1: a new concept in remote sensing of vegetation,” J. Quant. Spectrosc. Radiat. Transfer 112, 727–735 (2011).
[Crossref]

Schaepman, M. E.

L. Yáñez-Rausell, M. E. Schaepman, J. G. P. W. Clevers, and Z. Malenovský, “Minimizing measurement uncertainties of coniferous needle-leaf optical properties, Part I: methodological review,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7, 399–405 (2014).
[Crossref]

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing-definitions and case studies,” Remote Sens. Environ. 103, 27–42 (2006).
[Crossref]

Schaepman-Strub, G.

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing-definitions and case studies,” Remote Sens. Environ. 103, 27–42 (2006).
[Crossref]

Schleter, J. C.

Schmuck, G.

B. Hosgood, S. Jacquemoud, G. Andreoli, J. Verdebout, A. Pedrini, and G. Schmuck, “Leaf Optical Properties Experiment 93 (LOPEX93),” Revised report (JRC, 1995).

Schull, M. A.

Y. Knyazikhin, M. A. Schull, P. Stenberg, M. Mõttus, M. Rautiainen, Y. Yang, A. L. Marshak, P. Latorre Carmona, R. K. Kaufmann, P. Lewis, M. I. Disney, V. Vanderbilt, A. B. Davis, F. Baret, S. Jacquemoud, A. Lyapustin, and R. B. Myneni, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Y. Knyazikhin, M. A. Schull, L. Xu, R. B. Myneni, and A. Samanta, “Canopy spectral invariants. Part 1: a new concept in remote sensing of vegetation,” J. Quant. Spectrosc. Radiat. Transfer 112, 727–735 (2011).
[Crossref]

Soudani, K.

G. le Maire, C. François, K. Soudani, D. Berveiller, J.-Y. Pontailler, N. Bréda, H. Genet, H. Davi, and E. Dufrêne, “Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass,” Remote Sens. Environ. 112, 3846–3864 (2008).
[Crossref]

Stenberg, P.

P. Lukeš, P. Stenberg, M. Rautiainen, M. Mõttus, and K. M. Vanhatalo, “Optical properties of leaves and needles for boreal tree species in Europe,” Remote Sens. Lett. 4, 667–676 (2013).
[Crossref]

Y. Knyazikhin, M. A. Schull, P. Stenberg, M. Mõttus, M. Rautiainen, Y. Yang, A. L. Marshak, P. Latorre Carmona, R. K. Kaufmann, P. Lewis, M. I. Disney, V. Vanderbilt, A. B. Davis, F. Baret, S. Jacquemoud, A. Lyapustin, and R. B. Myneni, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Sterenborg, H. J.

Sterenborg, H. J. C. M.

Sulev, M.

M. Mõttus, M. Sulev, and L. Hallik, “Seasonal course of the spectral properties of Alder and Birch leaves,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7, 2496–2505 (2014).
[Crossref]

van Gemert, M. J.

van Gemert, M. J. C.

van Wieringen, N.

Vanderbilt, V.

Y. Knyazikhin, M. A. Schull, P. Stenberg, M. Mõttus, M. Rautiainen, Y. Yang, A. L. Marshak, P. Latorre Carmona, R. K. Kaufmann, P. Lewis, M. I. Disney, V. Vanderbilt, A. B. Davis, F. Baret, S. Jacquemoud, A. Lyapustin, and R. B. Myneni, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Vanhatalo, K. M.

P. Lukeš, P. Stenberg, M. Rautiainen, M. Mõttus, and K. M. Vanhatalo, “Optical properties of leaves and needles for boreal tree species in Europe,” Remote Sens. Lett. 4, 667–676 (2013).
[Crossref]

Verdebout, J.

B. Hosgood, S. Jacquemoud, G. Andreoli, J. Verdebout, A. Pedrini, and G. Schmuck, “Leaf Optical Properties Experiment 93 (LOPEX93),” Revised report (JRC, 1995).

Vogelmann, T. C.

H. L. Gorton, C. R. Brodersen, W. E. Williams, and T. C. Vogelmann, “Measurement of the optical properties of leaves under diffuse light,” Photochem. Photobiol. 86, 1076–1083 (2010).
[Crossref]

Weidner, V. R.

Williams, W. E.

H. L. Gorton, C. R. Brodersen, W. E. Williams, and T. C. Vogelmann, “Measurement of the optical properties of leaves under diffuse light,” Photochem. Photobiol. 86, 1076–1083 (2010).
[Crossref]

Xu, L.

Y. Knyazikhin, M. A. Schull, L. Xu, R. B. Myneni, and A. Samanta, “Canopy spectral invariants. Part 1: a new concept in remote sensing of vegetation,” J. Quant. Spectrosc. Radiat. Transfer 112, 727–735 (2011).
[Crossref]

Yáñez-Rausell, L.

L. Yáñez-Rausell, M. E. Schaepman, J. G. P. W. Clevers, and Z. Malenovský, “Minimizing measurement uncertainties of coniferous needle-leaf optical properties, Part I: methodological review,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7, 399–405 (2014).
[Crossref]

Yang, Y.

Y. Knyazikhin, M. A. Schull, P. Stenberg, M. Mõttus, M. Rautiainen, Y. Yang, A. L. Marshak, P. Latorre Carmona, R. K. Kaufmann, P. Lewis, M. I. Disney, V. Vanderbilt, A. B. Davis, F. Baret, S. Jacquemoud, A. Lyapustin, and R. B. Myneni, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Am. J. Bot. (1)

A. K. Knapp and G. A. Carter, “Variability in leaf optical properties among 26 species from a broad range of habitats,” Am. J. Bot. 85, 940–946 (1998).
[Crossref]

Appl. Opt. (3)

Ecol. Res. (1)

H. M. Noda, T. Motohka, K. Murakami, H. Muraoka, and K. N. Nasahara, “Reflectance and transmittance spectra of leaves and shoots of 22 vascular plant species and reflectance spectra of trunks and branches of 12 tree species in Japan,” Ecol. Res. 29, 111 (2014).
[Crossref]

IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. (2)

M. Mõttus, M. Sulev, and L. Hallik, “Seasonal course of the spectral properties of Alder and Birch leaves,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7, 2496–2505 (2014).
[Crossref]

L. Yáñez-Rausell, M. E. Schaepman, J. G. P. W. Clevers, and Z. Malenovský, “Minimizing measurement uncertainties of coniferous needle-leaf optical properties, Part I: methodological review,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7, 399–405 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

Y. Knyazikhin, M. A. Schull, L. Xu, R. B. Myneni, and A. Samanta, “Canopy spectral invariants. Part 1: a new concept in remote sensing of vegetation,” J. Quant. Spectrosc. Radiat. Transfer 112, 727–735 (2011).
[Crossref]

Photochem. Photobiol. (1)

H. L. Gorton, C. R. Brodersen, W. E. Williams, and T. C. Vogelmann, “Measurement of the optical properties of leaves under diffuse light,” Photochem. Photobiol. 86, 1076–1083 (2010).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

Y. Knyazikhin, M. A. Schull, P. Stenberg, M. Mõttus, M. Rautiainen, Y. Yang, A. L. Marshak, P. Latorre Carmona, R. K. Kaufmann, P. Lewis, M. I. Disney, V. Vanderbilt, A. B. Davis, F. Baret, S. Jacquemoud, A. Lyapustin, and R. B. Myneni, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Remote Sens. Environ. (4)

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing-definitions and case studies,” Remote Sens. Environ. 103, 27–42 (2006).
[Crossref]

C. S. T. Daughtry, L. L. Biehl, and K. J. Ranson, “A new technique to measure the spectral properties of conifer needles,” Remote Sens. Environ. 27, 81–91 (1989).
[Crossref]

J.-B. Féret, C. François, A. Gitelson, G. P. Asner, K. M. Barry, C. Panigada, A. D. Richardson, and S. Jacquemoud, “Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling,” Remote Sens. Environ. 115, 2742–2750 (2011).
[Crossref]

G. le Maire, C. François, K. Soudani, D. Berveiller, J.-Y. Pontailler, N. Bréda, H. Genet, H. Davi, and E. Dufrêne, “Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass,” Remote Sens. Environ. 112, 3846–3864 (2008).
[Crossref]

Remote Sens. Lett. (1)

P. Lukeš, P. Stenberg, M. Rautiainen, M. Mõttus, and K. M. Vanhatalo, “Optical properties of leaves and needles for boreal tree species in Europe,” Remote Sens. Lett. 4, 667–676 (2013).
[Crossref]

Surf. Coat. Int. (1)

K. F. Carr, “Integrating sphere theory and applications. Part I: integrating sphere theory and design,” Surf. Coat. Int. 80, 380–385 (1997).
[Crossref]

Other (3)

B. Hosgood, S. Jacquemoud, G. Andreoli, J. Verdebout, A. Pedrini, and G. Schmuck, “Leaf Optical Properties Experiment 93 (LOPEX93),” Revised report (JRC, 1995).

E. Middleton and J. Sullivan, “BOREAS TE-10 leaf optical properties for SSA species. Data set,” 2000. Available online: http://www.daac.ornl.gov.
[Crossref]

ASD, Integrating Sphere User Manual Rev. A (ASD Inc., 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Diagram of the measurement setup: tungsten halogen lamp, SpectroClip, optical switch, and ASD FieldSpec 4 spectroradiometer. Light enters the reflectance sphere with the power P in and reaches the target as a collimated beam at 8° from sample normal.
Fig. 2.
Fig. 2. Individual measurements and the average reflectance spectrum of the uncalibrated Spectralon panel used as white reference. Dotted line shows the reflectance spectrum of a calibrated Spectralon.
Fig. 3.
Fig. 3. Stray-light correction calculated as difference between the measured and calibration reflectance factors. Measured (thin line) and smoothed (thick line) data.
Fig. 4.
Fig. 4. (a) Mean and (b) standard deviation of the sphere constants ρ 0 (solid line) and ρ 0 (dashed line).
Fig. 5.
Fig. 5. Comparison of measured and calibrated spectra of the four diffuse reflectance standards.
Fig. 6.
Fig. 6. (a) Average reflectance and transmittance spectra and (b) leaf albedo of 336 leaf samples. The reflectance and transmittance curves can be distinguished by the typical low values in the visible part of the spectrum (400–700 nm). The gray area is standard deviation.
Fig. 7.
Fig. 7. Mean and standard deviation (gray area) of difference in (a) reflectance and (b) transmittance of adaxial and abaxial leaf sides (abaxial–adaxial) in the measured samples.

Tables (1)

Tables Icon

Table 1. Spectrally Averaged RMSE between the Measured and Calibration Certificate Spectra in the 400–2300 nm Wavelength Region

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

P = δ R c d + m R c + T d ρ ( T c d + m T c ) V ( 1 T d 2 ρ ρ ) P in , P = δ T c d + m T c + T d ρ ( R c d + m R c ) V ( 1 T d 2 ρ ρ ) P in ,
V = 1 ( m α + R d s + r h )
ρ = s V .
P = δ f m α R + ρ T 2 V ( 1 T 2 ρ ρ ) P in , P = δ f m α T ( 1 + ρ R ) V ( 1 T 2 ρ ρ ) P in .
ρ = ρ 0 1 R ρ 0
V = V 0 ( 1 R ρ 0 ) ,
ρ 0 = s V 0 ,
V 0 = 1 ( m α + r h )
P P ( SPC ) = R + ρ 0 ( T 2 R 2 ) ( 1 R ρ 0 ) ( 1 R ρ 0 ) T 2 ρ 0 ρ 0 1 R SPC ρ 0 R SPC .
P P ( SPC ) = R ( 1 R ρ 0 ) ( 1 R ρ 0 ) 1 R SPC ρ 0 R SPC .
R = ρ 0 Σ Q R + 1 ( ρ 0 ρ 0 ) 2 Q R 2 + 2 ρ 0 Σ Q R + 1 2 ρ 0 ρ 0 Q R ,
ρ 0 Σ = ρ 0 + ρ 0 = s V 0 + s V 0 ,
Q R = P P ( SPC ) R SPC 1 R SPC ρ 0 .
P P ( 0 ) = T ( 1 ρ 0 ρ 0 ) ( 1 R ρ 0 ) ( 1 R ρ 0 ) T 2 ρ 0 ρ 0 ,
T = ρ 0 ρ 0 1 + 4 ( 1 R ρ 0 ) ( 1 R ρ 0 ) ρ 0 ρ 0 Q T 2 + ( 1 ρ 0 ρ 0 ) 2 2 ρ 0 ρ 0 Q T ,
Q T = P P ( 0 ) .
R = ρ 0 Σ Q R + 1 4 ρ 0 2 ( ρ 0 Q R + 1 ) 2 T 2 + [ ( ρ 0 ρ 0 ) Q R + 1 ] 2 2 ρ 0 ( ρ 0 Q R + 1 ) .
P ( 0 ) P ( 0 ) = δ f m α δ f m α ρ 0 .
ρ 0 = P ( 0 ) P ( 0 ) .
P ( 0 ) P ( SPC ) = ρ 0 V 0 ( 1 ρ 0 ρ 0 ) V SPC R SPC ,
V SPC = 1 ( m α + R SPC s + r h ) .
ρ 0 = Q R , 0 R SPC R SPC ρ 0 ( Q R , 0 1 ) + 1 ,
Q R , 0 = P ( 0 ) P ( SPC ) .
R { P ( SPC ) [ R SPC P ( 0 ) P ( 0 ) 1 ] R SPC P P ( 0 ) P ( 0 ) } = P R SPC .
R { [ P ( SPC ) S ] [ R SPC P ( 0 ) S P ( 0 ) 1 ] R SPC ( P S ) P ( 0 ) S P ( 0 ) } = ( P S ) R SPC ,
S = P [ P ( 0 ) R P ( 0 ) ] R SPC + P ( SPC ) R [ P ( 0 ) P ( 0 ) R SPC ] R SPC R [ P P ( SPC ) ] + P ( 0 ) [ R R SPC ] ,
P P ( SPC ) = R R SPC V SPC V .
r R R = r R 1 = V SPC V 1 = V SPC V V .
r R R = ( R SPC R ) s V = ( R SPC R ) ρ .
R SPC = P uncalib P calib × R SPC _ calib ,
RMSE = λ = 400 2300 ( R ( λ ) R ref ( λ ) ) 1900 .

Metrics