Abstract

Measurements from two field campaigns that employed a micropulse lidar are used to compare the near-end and the far-end lidar equation inversion methods for estimating emission factors (EFs) of particulate matter (PM) from three types of anthropogenic fugitive sources: vehicles moving on unpaved roads, open burning, and open detonation. As optical depth increased from 0 to 2, relative EF uncertainty increased from 54% to 300% using the near-end method and decreased from 69% to 42% using the far-end method. To the best of our knowledge, this research is the first to use field measurements to compare results from these methods for anthropogenic PM plumes and quantify their uncertainties.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiply scattered aerosol lidar returns: inversion method and comparison with in situ measurements

Luc R. Bissonnette and Daniel L. Hutt
Appl. Opt. 34(30) 6959-6975 (1995)

Information-theoretic method for the inversion of the lidar equation

Eugene Yee
Appl. Opt. 28(9) 1628-1637 (1989)

Distortion of particulate extinction profiles measured with lidar in a two-component atmosphere

Vladimir A. Kovalev and H. Moosmüller
Appl. Opt. 33(27) 6499-6507 (1994)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription