Abstract

A phase demodulation method via light propagation is proposed, where one or two fringe patterns are viewed as the superposition of complex amplitudes, and then the phase is reconstructed by separating the light field via light propagation. Simulation and experimental results indicated that the proposed method can extract the phase from a single shot effectively, thereby realizing dynamic phase retrieval. In addition, the accuracy of phase reconstruction can be improved by adding another fringe pattern with an unknown phase shift. The carrier requirement is relatively low, and, thus, the proposed method can be applied to the measurements with an environment disturbance, an inaccurate phase shift, and the requirement of a high speed capture.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase extraction from two phase-shifting fringe patterns using spatial-temporal fringes method

Ronggang Zhu, Bo Li, Rihong Zhu, Yong He, and Jianxin Li
Opt. Express 24(7) 6814-6824 (2016)

Extraction of phase field from a single contoured correlation fringe pattern of ESPI

Qifeng Yu, Sihua Fu, Xia Yang, Xiangyi Sun, and Xiaolin Liu
Opt. Express 12(1) 75-83 (2004)

Phase extraction from interferograms with unknown tilt phase shifts based on a regularized optical flow method

Fa Zeng, Qiaofeng Tan, Huarong Gu, and Guofan Jin
Opt. Express 21(14) 17234-17248 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (1)

NameDescription
» Visualization 1: AVI (234 KB)      Phase reconstruction with different focal lengths

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription