Abstract

We present a lithographically defined, ultra-high vacuum (UHV) compatible on-chip structure acting as a mechanical splicer that allows efficient injection of light from a conventional solid-core (SC) fiber to a hollow-core photonic crystal fiber (HCPCF) and vice versa. We report the observed coupling efficiencies for an assortment of solid-core fibers and a HCPCF with maximum efficiency between solid-core fiber and HCPCF of 93%.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient and short-range light coupling to index-matched liquid-filled hole in a solid-core photonic crystal fiber

Rodrigo M. Gerosa, Danilo H. Spadoti, Christiano J. S. de Matos, Leonardo de S. Menezes, and Marcos A. R. Franco
Opt. Express 19(24) 24687-24698 (2011)

Light beam coupling between standard single mode fibers and highly nonlinear photonic crystal fibers based on the fused biconical tapering technique

Jianguo Liu, Tee-Hiang Cheng, Yong-kee Yeo, Yixin Wang, Lifang Xue, Zhaowen Xu, and Dawei Wang
Opt. Express 17(5) 3115-3123 (2009)

Guiding light in a water core all-solid cladding photonic band gap fiber – an innovative platform for fiber-based optofluidics

Guangrui Li, Matthias Zeisberger, and Markus A. Schmidt
Opt. Express 25(19) 22467-22479 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. H. Chong, M. Rao, Y. Zhu, and P. Shum, “An effective splicing method on photonic crystal fiber using CO2 laser,” IEEE Photon. Technol. Lett. 15, 942–944 (2003).
    [Crossref]
  2. A. D. Yablon and R. Bise, “Low-loss high-strength microstructured fiber fusion splices using grin fiber lenses,” in Optical Fiber Communication Conference (Optical Society of America, 2004), p. MF14.
  3. R. Thapa, K. Knabe, K. Corwin, and B. Washburn, “Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells,” Opt. Express 14, 9576–9583 (2006).
    [Crossref]
  4. L. Xiao, M. Demokan, W. Jin, Y. Wang, and C.-L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25, 3563–3574 (2007).
    [Crossref]
  5. M. Tse, H. Tam, L. Fu, B. Thomas, L. Dong, C. Lu, and P. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21, 164–166 (2009).
    [Crossref]
  6. T. Zhu, F. Xiao, L. Xu, M. Liu, M. Deng, and K. S. Chiang, “Pressure-assisted low-loss fusion splicing between photonic crystal fiber and single-mode fiber,” Opt. Express 20, 24465–24471 (2012).
    [Crossref]
  7. V. Parmar, R. Bhatnagar, and P. Kapur, “Optimized butt coupling between single mode fiber and hollow-core photonic crystal fiber,” Opt. Fiber Technol. 19, 490–494 (2013).
    [Crossref]
  8. D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
    [Crossref]
  9. X. Liu, K.-H. Brenner, M. Wilzbach, M. Schwarz, T. Fernholz, and J. Schmiedmayer, “Fabrication of alignment structures for a fiber resonator by use of deep-ultraviolet lithography,” Appl. Opt. 44, 6857–6860 (2005).
    [Crossref]
  10. W.-J. Kang, E. Rabe, S. Kopetz, and A. Neyer, “Novel exposure methods based on reflection and refraction effects in the field of SU-8 lithography,” J. Micromech. Microeng. 16, 821–831 (2006).
    [Crossref]
  11. R. Feng and R. Farris, “The characterization of thermal and elastic constants for an epoxy photoresist SU8 coating,” J. Mater. Sci. 37, 4793–4799 (2002).
    [Crossref]
  12. H. Kogelnik, “Coupling and conversion coefficients for optical modes,” in Symposium in Quasi Optics (Polytechnic, 1964), pp. 333–347.
  13. Thorlabs, “Hollow core photonic crystal fibers,” https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=912 .
  14. H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5, 598–604 (2011).
    [Crossref]
  15. X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5, 591–597 (2011).
    [Crossref]

2013 (1)

V. Parmar, R. Bhatnagar, and P. Kapur, “Optimized butt coupling between single mode fiber and hollow-core photonic crystal fiber,” Opt. Fiber Technol. 19, 490–494 (2013).
[Crossref]

2012 (1)

2011 (2)

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5, 598–604 (2011).
[Crossref]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5, 591–597 (2011).
[Crossref]

2010 (1)

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

2009 (1)

M. Tse, H. Tam, L. Fu, B. Thomas, L. Dong, C. Lu, and P. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21, 164–166 (2009).
[Crossref]

2007 (1)

2006 (2)

R. Thapa, K. Knabe, K. Corwin, and B. Washburn, “Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells,” Opt. Express 14, 9576–9583 (2006).
[Crossref]

W.-J. Kang, E. Rabe, S. Kopetz, and A. Neyer, “Novel exposure methods based on reflection and refraction effects in the field of SU-8 lithography,” J. Micromech. Microeng. 16, 821–831 (2006).
[Crossref]

2005 (1)

2003 (1)

J. H. Chong, M. Rao, Y. Zhu, and P. Shum, “An effective splicing method on photonic crystal fiber using CO2 laser,” IEEE Photon. Technol. Lett. 15, 942–944 (2003).
[Crossref]

2002 (1)

R. Feng and R. Farris, “The characterization of thermal and elastic constants for an epoxy photoresist SU8 coating,” J. Mater. Sci. 37, 4793–4799 (2002).
[Crossref]

Bhatnagar, R.

V. Parmar, R. Bhatnagar, and P. Kapur, “Optimized butt coupling between single mode fiber and hollow-core photonic crystal fiber,” Opt. Fiber Technol. 19, 490–494 (2013).
[Crossref]

Bise, R.

A. D. Yablon and R. Bise, “Low-loss high-strength microstructured fiber fusion splices using grin fiber lenses,” in Optical Fiber Communication Conference (Optical Society of America, 2004), p. MF14.

Brenner, K.-H.

Chiang, K. S.

Chong, J. H.

J. H. Chong, M. Rao, Y. Zhu, and P. Shum, “An effective splicing method on photonic crystal fiber using CO2 laser,” IEEE Photon. Technol. Lett. 15, 942–944 (2003).
[Crossref]

Colombe, Y.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Corwin, K.

Demokan, M.

Deng, M.

Deutsch, C.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Dong, L.

M. Tse, H. Tam, L. Fu, B. Thomas, L. Dong, C. Lu, and P. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21, 164–166 (2009).
[Crossref]

Fan, X.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5, 591–597 (2011).
[Crossref]

Farris, R.

R. Feng and R. Farris, “The characterization of thermal and elastic constants for an epoxy photoresist SU8 coating,” J. Mater. Sci. 37, 4793–4799 (2002).
[Crossref]

Feng, R.

R. Feng and R. Farris, “The characterization of thermal and elastic constants for an epoxy photoresist SU8 coating,” J. Mater. Sci. 37, 4793–4799 (2002).
[Crossref]

Fernholz, T.

Fu, L.

M. Tse, H. Tam, L. Fu, B. Thomas, L. Dong, C. Lu, and P. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21, 164–166 (2009).
[Crossref]

Hänsch, T. W.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Hawkins, A. R.

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5, 598–604 (2011).
[Crossref]

Hunger, D.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Jin, W.

Kang, W.-J.

W.-J. Kang, E. Rabe, S. Kopetz, and A. Neyer, “Novel exposure methods based on reflection and refraction effects in the field of SU-8 lithography,” J. Micromech. Microeng. 16, 821–831 (2006).
[Crossref]

Kapur, P.

V. Parmar, R. Bhatnagar, and P. Kapur, “Optimized butt coupling between single mode fiber and hollow-core photonic crystal fiber,” Opt. Fiber Technol. 19, 490–494 (2013).
[Crossref]

Knabe, K.

Kogelnik, H.

H. Kogelnik, “Coupling and conversion coefficients for optical modes,” in Symposium in Quasi Optics (Polytechnic, 1964), pp. 333–347.

Kopetz, S.

W.-J. Kang, E. Rabe, S. Kopetz, and A. Neyer, “Novel exposure methods based on reflection and refraction effects in the field of SU-8 lithography,” J. Micromech. Microeng. 16, 821–831 (2006).
[Crossref]

Liu, M.

Liu, X.

Lu, C.

M. Tse, H. Tam, L. Fu, B. Thomas, L. Dong, C. Lu, and P. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21, 164–166 (2009).
[Crossref]

Neyer, A.

W.-J. Kang, E. Rabe, S. Kopetz, and A. Neyer, “Novel exposure methods based on reflection and refraction effects in the field of SU-8 lithography,” J. Micromech. Microeng. 16, 821–831 (2006).
[Crossref]

Parmar, V.

V. Parmar, R. Bhatnagar, and P. Kapur, “Optimized butt coupling between single mode fiber and hollow-core photonic crystal fiber,” Opt. Fiber Technol. 19, 490–494 (2013).
[Crossref]

Rabe, E.

W.-J. Kang, E. Rabe, S. Kopetz, and A. Neyer, “Novel exposure methods based on reflection and refraction effects in the field of SU-8 lithography,” J. Micromech. Microeng. 16, 821–831 (2006).
[Crossref]

Rao, M.

J. H. Chong, M. Rao, Y. Zhu, and P. Shum, “An effective splicing method on photonic crystal fiber using CO2 laser,” IEEE Photon. Technol. Lett. 15, 942–944 (2003).
[Crossref]

Reichel, J.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Schmidt, H.

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5, 598–604 (2011).
[Crossref]

Schmiedmayer, J.

Schwarz, M.

Shum, P.

J. H. Chong, M. Rao, Y. Zhu, and P. Shum, “An effective splicing method on photonic crystal fiber using CO2 laser,” IEEE Photon. Technol. Lett. 15, 942–944 (2003).
[Crossref]

Steinmetz, T.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Tam, H.

M. Tse, H. Tam, L. Fu, B. Thomas, L. Dong, C. Lu, and P. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21, 164–166 (2009).
[Crossref]

Thapa, R.

Thomas, B.

M. Tse, H. Tam, L. Fu, B. Thomas, L. Dong, C. Lu, and P. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21, 164–166 (2009).
[Crossref]

Tse, M.

M. Tse, H. Tam, L. Fu, B. Thomas, L. Dong, C. Lu, and P. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21, 164–166 (2009).
[Crossref]

Wai, P.

M. Tse, H. Tam, L. Fu, B. Thomas, L. Dong, C. Lu, and P. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21, 164–166 (2009).
[Crossref]

Wang, Y.

Washburn, B.

White, I. M.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5, 591–597 (2011).
[Crossref]

Wilzbach, M.

Xiao, F.

Xiao, L.

Xu, L.

Yablon, A. D.

A. D. Yablon and R. Bise, “Low-loss high-strength microstructured fiber fusion splices using grin fiber lenses,” in Optical Fiber Communication Conference (Optical Society of America, 2004), p. MF14.

Zhao, C.-L.

Zhu, T.

Zhu, Y.

J. H. Chong, M. Rao, Y. Zhu, and P. Shum, “An effective splicing method on photonic crystal fiber using CO2 laser,” IEEE Photon. Technol. Lett. 15, 942–944 (2003).
[Crossref]

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (2)

J. H. Chong, M. Rao, Y. Zhu, and P. Shum, “An effective splicing method on photonic crystal fiber using CO2 laser,” IEEE Photon. Technol. Lett. 15, 942–944 (2003).
[Crossref]

M. Tse, H. Tam, L. Fu, B. Thomas, L. Dong, C. Lu, and P. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21, 164–166 (2009).
[Crossref]

J. Lightwave Technol. (1)

J. Mater. Sci. (1)

R. Feng and R. Farris, “The characterization of thermal and elastic constants for an epoxy photoresist SU8 coating,” J. Mater. Sci. 37, 4793–4799 (2002).
[Crossref]

J. Micromech. Microeng. (1)

W.-J. Kang, E. Rabe, S. Kopetz, and A. Neyer, “Novel exposure methods based on reflection and refraction effects in the field of SU-8 lithography,” J. Micromech. Microeng. 16, 821–831 (2006).
[Crossref]

Nat. Photonics (2)

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5, 598–604 (2011).
[Crossref]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5, 591–597 (2011).
[Crossref]

New J. Phys. (1)

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Opt. Express (2)

Opt. Fiber Technol. (1)

V. Parmar, R. Bhatnagar, and P. Kapur, “Optimized butt coupling between single mode fiber and hollow-core photonic crystal fiber,” Opt. Fiber Technol. 19, 490–494 (2013).
[Crossref]

Other (3)

A. D. Yablon and R. Bise, “Low-loss high-strength microstructured fiber fusion splices using grin fiber lenses,” in Optical Fiber Communication Conference (Optical Society of America, 2004), p. MF14.

H. Kogelnik, “Coupling and conversion coefficients for optical modes,” in Symposium in Quasi Optics (Polytechnic, 1964), pp. 333–347.

Thorlabs, “Hollow core photonic crystal fibers,” https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=912 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Fiber alignment structure (a) geometry of the clamping structure design; (b) top view; (c) cross section; and (d) side view: different diameter fibers vertically aligned to have the same optical axis.
Fig. 2.
Fig. 2. (Top left) Photomask channel width needed for a 125 μm diameter fiber as a function of undercut angle ( θ ) and height ( h ) of the SU-8 structure (from Eq. 1). The target width was selected at θ = 10 ° and h = 90    μm . (Top right) Maximum fiber diameter that can be accommodated with the selected channel width by adjusting the wall angle and resist thickness. The shaded region shows the values needed for a 125 μm diameter fiber. (Bottom) Similar calculation shown for 130 μm diameter fiber.
Fig. 3.
Fig. 3. Fabrication process flow for on-chip fiber splicer.
Fig. 4.
Fig. 4. (Top) Experimental setup for on-chip fiber splicer efficiency measurement. (Bottom) Optical microscope images of SMF–SMF and HCPCF–SMF coupling, and cross sectional view of a HCPCF mounted on the chip.
Fig. 5.
Fig. 5. Coupling efficiency measurement results for SMF to SMF, MMF, and HCPCF. Core diameter and mode field diameter (MFD) from the datasheet of the fibers are shown in the table. Each red circle with an error bar (most of them are very small) is a measured value averaged over 60,000 samples.
Fig. 6.
Fig. 6. Coupling efficiency measurement results for HCPCF to SMF and MMF. The inset shows the imperfection in cleaving the hollow-core fiber that results in lower coupling efficiency.
Fig. 7.
Fig. 7. Coupling efficiency measurement summary.

Tables (1)

Tables Icon

Table 1. Measured Butt Coupling Efficiency ( η ) and Loss in the Fiber Joint

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

w = ( 2 h d cos θ d tan θ ) 2 + 4 h ( d h ) .
η = 4 w 1 2 w 2 2 ( w 1 2 + w 2 2 ) 2 + [ λ z w π n i ] 2 exp [ 2 w 1 w 2 w 1 2 + w 2 2 ( s 2 w 1 w 2 + θ 2 θ d 1 θ d 2 ) ] ,
Loss splice = Loss measured | 10 log [ 4 w 1 2 w 2 2 ( w 1 2 + w 2 2 ) 2 × ( 1 R ) n ] | ,

Metrics