Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optimization technique for rolled edge control process based on the acentric tool influence functions

Not Accessible

Your library or personal account may give you access

Abstract

In the process of computer controlled optical surfacing (CCOS), the uncontrollable rolled edge restricts further improvements of the machining accuracy and efficiency. Two reasons are responsible for the rolled edge problem during small tool polishing. One is that the edge areas cannot be processed because of the orbit movement. The other is that changing the tool influence function (TIF) is difficult to compensate for in algorithms, since pressure step appears in the local pressure distribution at the surface edge. In this paper, an acentric tool influence function (A-TIF) is designed to remove the rolled edge after CCOS polishing. The model of A-TIF is analyzed theoretically, and a control point translation dwell time algorithm is used to verify that the full aperture of the workpiece can be covered by the peak removal point of the tool influence functions. Thus, surface residual error in the full aperture can be effectively corrected. Finally, the experiments are carried out. Two fused silica glass samples of 100mm×100mm are polished by traditional CCOS and the A-TIF method, respectively. The rolled edge was clearly produced in the sample polished by the traditional CCOS, while residual errors do not show this problem the sample polished by the A-TIF method. Therefore, the rolled edge caused by the traditional CCOS process is successfully suppressed during the A-TIF process. The ability to suppress the rolled edge of the designed A-TIF has been confirmed.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Removal of millimeter-scale rolled edges using bevel-cut-like tool influence function in magnetorheological jet polishing

Hao Yang, Haobo Cheng, Yunpeng Feng, and Xiaoli Jing
Appl. Opt. 57(13) 3377-3384 (2018)

Edge control in a computer controlled optical surfacing process using a heterocercal tool influence function

Haixiang Hu, Xin Zhang, Virginia Ford, Xiao Luo, Erhui Qi, Xuefeng Zeng, and Xuejun Zhang
Opt. Express 24(23) 26809-26824 (2016)

Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions

Dae Wook Kim, Sug-Whan Kim, and James H. Burge
Opt. Express 17(24) 21850-21866 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved