Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Sensitivity tests on the convergence tendency of the scattering order formulation of the discrete dipole approximation

Not Accessible

Your library or personal account may give you access

Abstract

In this study, we performed a series of sensitivity tests in order to elucidate the convergence tendency of the scattering order formulation (SOF) of the discrete dipole approximation (DDA). Using both the original formulation of the SOF and a new marching SOF, the progression of orders of scattering marches, along with the propagation of the incident plane wave through the scatterer, allow dipoles that come into steady-state oscillation with the incident wave earlier to more quickly advance to the next order of scattering that is local to them. Using the original SOF, we found that for cases in which the simulations converge (rods and very small spheres), there are a number of different possible convergence tendencies, among them convergence behavior that resembles the decaying oscillations of a damped harmonic oscillator. For the cases in which the original SOF does not converge, we did not find an indication that the lack of convergence is due to a numerical issue, such as round-off error, or that the divergence could be alleviated by increasing the dipole resolution or by decreasing the size of the marching step in the marching SOF. For cases in which the original SOF does not converge, with both the original SOF and the marching SOF, we found that the calculated extinction cross section exhibits oscillations about the correct value, but with increasing amplitude rather than with decreasing amplitude.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Flexible scattering order formulation of the discrete dipole approximation

Ynon Hefets and Carynelisa Haspel
Appl. Opt. 62(23) 6093-6105 (2023)

Internal and scattered electric fields in the discrete dipole approximation

Stephen D. Druger and Burt V. Bronk
J. Opt. Soc. Am. B 16(12) 2239-2246 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.