Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Potentials of radial partially coherent beams in free-space optical communication: a numerical investigation

Not Accessible

Your library or personal account may give you access

Abstract

Nonuniformly correlated partially coherent beams (PCBs) have extraordinary propagation properties, making it possible to further improve the performance of free-space optical communications. In this paper, a series of PCBs with varying degrees of coherence in the radial direction, academically called radial partially coherent beams (RPCBs), are considered. RPCBs with arbitrary coherence distributions can be created by adjusting the amplitude profile of a spatial modulation function imposed on a uniformly correlated phase screen. Since RPCBs cannot be well characterized by the coherence length, a modulation depth factor is introduced as an indicator of the overall distribution of coherence. By wave optics simulation, free-space and atmospheric propagation properties of RPCBs with (inverse) Gaussian and super-Gaussian coherence distributions are examined in comparison with conventional Gaussian Schell-model beams. Furthermore, the impacts of varying central coherent areas are studied. Simulation results reveal that under comparable overall coherence, beams with a highly coherent core and a less coherent margin exhibit a smaller beam spread and greater on-axis intensity, which is mainly due to the self-focusing phenomenon right after the beam exits the transmitter. Particularly, those RPCBs with super-Gaussian coherence distributions will repeatedly focus during propagation, resulting in even greater intensities. Additionally, RPCBs also have a considerable ability to reduce scintillation. And it is demonstrated that those properties have made RPCBs very effective in improving the mean signal-to-noise ratio of small optical receivers, especially in relatively short, weakly fluctuating links.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Propagation of partially coherent beams with convex-shaped spatial coherence modulation in vertical turbulent links

Minghao Wang, Tim Kane, Xiuhua Yuan, Yan’an Zeng, and Omar Alharbi
Opt. Express 26(24) 32130-32144 (2018)

Numerical research on partially coherent flat-topped beam propagation through atmospheric turbulence along a slant path

Xiaoxin Zhou, Zeyu Zhou, Peng Tian, and Xiuhua Yuan
Appl. Opt. 58(34) 9443-9454 (2019)

Propagation properties of Hermite non-uniformly correlated beams in turbulence

Jiayi Yu, Fei Wang, Lin Liu, Yangjian Cai, and Greg Gbur
Opt. Express 26(13) 16333-16343 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.