Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Spectrophotometric determination of turbid optical parameters without using an integrating sphere

Not Accessible

Your library or personal account may give you access

Abstract

Spectrophotometric quantification of turbidity by multiple optical parameters has wide-ranging applications in material analysis and life sciences. A robust system design needs to combine hardware for precise measurement of light signals with software to accurately model measurement configuration and rapidly solve a sequence of challenging inverse problems. We have developed and validated a design approach and performed system validation based on radiative transfer theory for determination of absorption coefficient, scattering coefficient, and anisotropy factor without using an integrating sphere. Accurate and rapid determination of parameters and spectra is achieved for microsphere suspension samples by combining photodiode-based measurement of four signals with the Monte Carlo simulation and perturbation-based inverse calculations. The three parameters of microsphere suspension samples have been determined from the measured signals as functions of wavelength from 400 to 800 nm and agree with calculated results based on the Mie theory. It has been shown that the inverse problems in the cases of microsphere suspension samples are well posed with convex cost functions to yield unique solutions, and it takes about 1 min to obtain the three parameters per wavelength.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
A primary method for determination of optical parameters of turbid samples and application to intralipid between 550 and 1630nm

Cheng Chen, Jun Q. Lu, Huafeng Ding, Kenneth M. Jacobs, Yong Du, and Xin-Hua Hu
Opt. Express 14(16) 7420-7435 (2006)

Inverse hybrid technique for determining the optical properties of turbid media from integrating-sphere measurements

I. V. Yaroslavsky, A. N. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier
Appl. Opt. 35(34) 6797-6809 (1996)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.