Abstract

A major challenge encountered in digital holography applications is the need to synthesize computer-generated holograms (CGHs) that are realizable as phase-only elements while also delivering high quality reconstruction. This trade-off is particularly acute in high-precision applications such as photolithography where contrast typically must exceed 0.6. A seeded-phase point method is proposed to address this challenge, whereby patterns composed of fine lines that intersect and form closed shapes are reconstructed with high contrast while maintaining a phase-only CGH. The method achieves superior contrast to that obtained by uniform or random seeded-phase methods while maintaining computational efficiency for large area exposures. It is also shown that binary phase modulation achieves similar contrast performance with benefits for the fabrication of simpler diffractive optical elements.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of multilevel phase computer-generated hologram elements based on effective medium theory

Wanji Yu, Koji Takahara, Tsuyoshi Konishi, Tsutom Yotsuya, and Yoshiki Ichioka
Appl. Opt. 39(20) 3531-3536 (2000)

Fast 3D reconstruction method for differential phase contrast X-ray CT

Michael T. McCann, Masih Nilchian, Marco Stampanoni, and Michael Unser
Opt. Express 24(13) 14564-14581 (2016)

Fast calculation method of a CGH for a patch model using a point-based method

Y. Ogihara and Y. Sakamoto
Appl. Opt. 54(1) A76-A83 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. Buckley, “Holographic laser projection,” J. Disp. Technol. 7, 135–140 (2011).
    [Crossref]
  2. C. Bay, N. Hubner, J. Freeman, and T. Wilkinson, “Maskless photolithography via holographic optical projection,” Opt. Lett. 35, 2230–2232 (2010).
    [Crossref]
  3. R. W. Gerchberg and W. O. Saxton, “Phase determination for image and diffraction plane pictures in the electron microscope,” Optik 34, 275–284 (1971).
  4. F. Wyrowski, E.-B. Kley, S. Buehling, T. J. Nellissen, L. Wang, and M. Dirkzwager, “Proximity printing by wave-optically designed masks,” Proc. SPIE 4436, 130–139 (2001).
    [Crossref]
  5. J. J. Cowling, G. L. Williams, A. Purvis, R. McWilliam, J. J. Toriz-Garcia, N. L. Seed, F. B. Soulard, and P. A. Ivey, “Three-dimensional holographic lithography by an iterative algorithm,” Opt. Lett. 36, 2495–2497 (2011).
    [Crossref]
  6. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982).
    [Crossref]
  7. J. J. Cowling, “An iterative algorithm for lithography on three-dimensional surfaces,” Ph.D. thesis (Durham University, 2015).
  8. C. Frere, D. Leseberg, and O. Bryngdahl, “Computer-generated holograms of three-dimensional objects composed of line segments,” J. Opt. Soc. Am. A 3, 726–730 (1986).
    [Crossref]
  9. A. Maiden, R. McWilliam, A. Purvis, S. Johnson, G. L. Williams, N. L. Seed, and P. A. Ivey, “Nonplanar photolithography with computer-generated holograms,” Opt. Lett. 30, 1300–1302 (2005).
    [Crossref]
  10. G. L. Williams, R. McWilliam, A. Maiden, A. Purvis, P. A. Ivey, and N. L. Seed, “Photolithography on grossly non-planar substrates,” in Conference on High Density Microsystem Design and Packaging and Component Failure Analysis (IEEE, 2005), pp. 442–446.
  11. R. McWilliam, A. Purvis, G. Williams, F. Soulard, and N. L. Seed, “High contrast patterns generated by phase-seeded CGH extensible to 3-D patterns and binary modulation,” in Digital Holography & 3-D Imaging Meeting, OSA Technical Digest (Optical Society of America, 2015), paper DTh4A.4.
  12. J. Rosen, “Computer-generated holograms of images reconstructed on curved surfaces,” Appl. Opt. 38, 6136–6140 (1999).
    [Crossref]
  13. J. P. Waters, “Three-dimensional Fourier-transform method for synthesizing binary holograms,” J. Opt. Soc. Am. 58, 1284–1287 (1968).
    [Crossref]
  14. P. Tsang, T.-C. Poon, W.-K. Cheung, and J.-P. Liu, “Computer generation of binary Fresnel holography,” Appl. Opt. 50, B88–B95 (2011).
    [Crossref]
  15. Y. Takaki and M. Yokouchi, “Speckle-free and grayscale hologram reconstruction using time-multiplexing technique,” Opt. Express 19, 7567–7579 (2011).
    [Crossref]
  16. F. Shen and A. Wang, “Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula,” Appl. Opt. 45, 1102–1110 (2006).
    [Crossref]
  17. A. K.-K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001).
  18. J. J. Toriz-Garcia, J. J. Cowling, G. L. Williams, Q. Bai, N. L. Seed, A. Tennant, R. McWilliam, A. Purvis, F. B. Soulard, and P. A. Ivey, “Fabrication of a 3D electrically small antenna using holographic photolithography,” J. Micromech. Microeng. 23, 055010 (2013).
    [Crossref]

2013 (1)

J. J. Toriz-Garcia, J. J. Cowling, G. L. Williams, Q. Bai, N. L. Seed, A. Tennant, R. McWilliam, A. Purvis, F. B. Soulard, and P. A. Ivey, “Fabrication of a 3D electrically small antenna using holographic photolithography,” J. Micromech. Microeng. 23, 055010 (2013).
[Crossref]

2011 (4)

2010 (1)

2006 (1)

2005 (1)

2001 (1)

F. Wyrowski, E.-B. Kley, S. Buehling, T. J. Nellissen, L. Wang, and M. Dirkzwager, “Proximity printing by wave-optically designed masks,” Proc. SPIE 4436, 130–139 (2001).
[Crossref]

1999 (1)

1986 (1)

1982 (1)

1971 (1)

R. W. Gerchberg and W. O. Saxton, “Phase determination for image and diffraction plane pictures in the electron microscope,” Optik 34, 275–284 (1971).

1968 (1)

Bai, Q.

J. J. Toriz-Garcia, J. J. Cowling, G. L. Williams, Q. Bai, N. L. Seed, A. Tennant, R. McWilliam, A. Purvis, F. B. Soulard, and P. A. Ivey, “Fabrication of a 3D electrically small antenna using holographic photolithography,” J. Micromech. Microeng. 23, 055010 (2013).
[Crossref]

Bay, C.

Bryngdahl, O.

Buckley, E.

E. Buckley, “Holographic laser projection,” J. Disp. Technol. 7, 135–140 (2011).
[Crossref]

Buehling, S.

F. Wyrowski, E.-B. Kley, S. Buehling, T. J. Nellissen, L. Wang, and M. Dirkzwager, “Proximity printing by wave-optically designed masks,” Proc. SPIE 4436, 130–139 (2001).
[Crossref]

Cheung, W.-K.

Cowling, J. J.

J. J. Toriz-Garcia, J. J. Cowling, G. L. Williams, Q. Bai, N. L. Seed, A. Tennant, R. McWilliam, A. Purvis, F. B. Soulard, and P. A. Ivey, “Fabrication of a 3D electrically small antenna using holographic photolithography,” J. Micromech. Microeng. 23, 055010 (2013).
[Crossref]

J. J. Cowling, G. L. Williams, A. Purvis, R. McWilliam, J. J. Toriz-Garcia, N. L. Seed, F. B. Soulard, and P. A. Ivey, “Three-dimensional holographic lithography by an iterative algorithm,” Opt. Lett. 36, 2495–2497 (2011).
[Crossref]

J. J. Cowling, “An iterative algorithm for lithography on three-dimensional surfaces,” Ph.D. thesis (Durham University, 2015).

Dirkzwager, M.

F. Wyrowski, E.-B. Kley, S. Buehling, T. J. Nellissen, L. Wang, and M. Dirkzwager, “Proximity printing by wave-optically designed masks,” Proc. SPIE 4436, 130–139 (2001).
[Crossref]

Fienup, J. R.

Freeman, J.

Frere, C.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “Phase determination for image and diffraction plane pictures in the electron microscope,” Optik 34, 275–284 (1971).

Hubner, N.

Ivey, P. A.

J. J. Toriz-Garcia, J. J. Cowling, G. L. Williams, Q. Bai, N. L. Seed, A. Tennant, R. McWilliam, A. Purvis, F. B. Soulard, and P. A. Ivey, “Fabrication of a 3D electrically small antenna using holographic photolithography,” J. Micromech. Microeng. 23, 055010 (2013).
[Crossref]

J. J. Cowling, G. L. Williams, A. Purvis, R. McWilliam, J. J. Toriz-Garcia, N. L. Seed, F. B. Soulard, and P. A. Ivey, “Three-dimensional holographic lithography by an iterative algorithm,” Opt. Lett. 36, 2495–2497 (2011).
[Crossref]

A. Maiden, R. McWilliam, A. Purvis, S. Johnson, G. L. Williams, N. L. Seed, and P. A. Ivey, “Nonplanar photolithography with computer-generated holograms,” Opt. Lett. 30, 1300–1302 (2005).
[Crossref]

G. L. Williams, R. McWilliam, A. Maiden, A. Purvis, P. A. Ivey, and N. L. Seed, “Photolithography on grossly non-planar substrates,” in Conference on High Density Microsystem Design and Packaging and Component Failure Analysis (IEEE, 2005), pp. 442–446.

Johnson, S.

Kley, E.-B.

F. Wyrowski, E.-B. Kley, S. Buehling, T. J. Nellissen, L. Wang, and M. Dirkzwager, “Proximity printing by wave-optically designed masks,” Proc. SPIE 4436, 130–139 (2001).
[Crossref]

Leseberg, D.

Liu, J.-P.

Maiden, A.

A. Maiden, R. McWilliam, A. Purvis, S. Johnson, G. L. Williams, N. L. Seed, and P. A. Ivey, “Nonplanar photolithography with computer-generated holograms,” Opt. Lett. 30, 1300–1302 (2005).
[Crossref]

G. L. Williams, R. McWilliam, A. Maiden, A. Purvis, P. A. Ivey, and N. L. Seed, “Photolithography on grossly non-planar substrates,” in Conference on High Density Microsystem Design and Packaging and Component Failure Analysis (IEEE, 2005), pp. 442–446.

McWilliam, R.

J. J. Toriz-Garcia, J. J. Cowling, G. L. Williams, Q. Bai, N. L. Seed, A. Tennant, R. McWilliam, A. Purvis, F. B. Soulard, and P. A. Ivey, “Fabrication of a 3D electrically small antenna using holographic photolithography,” J. Micromech. Microeng. 23, 055010 (2013).
[Crossref]

J. J. Cowling, G. L. Williams, A. Purvis, R. McWilliam, J. J. Toriz-Garcia, N. L. Seed, F. B. Soulard, and P. A. Ivey, “Three-dimensional holographic lithography by an iterative algorithm,” Opt. Lett. 36, 2495–2497 (2011).
[Crossref]

A. Maiden, R. McWilliam, A. Purvis, S. Johnson, G. L. Williams, N. L. Seed, and P. A. Ivey, “Nonplanar photolithography with computer-generated holograms,” Opt. Lett. 30, 1300–1302 (2005).
[Crossref]

R. McWilliam, A. Purvis, G. Williams, F. Soulard, and N. L. Seed, “High contrast patterns generated by phase-seeded CGH extensible to 3-D patterns and binary modulation,” in Digital Holography & 3-D Imaging Meeting, OSA Technical Digest (Optical Society of America, 2015), paper DTh4A.4.

G. L. Williams, R. McWilliam, A. Maiden, A. Purvis, P. A. Ivey, and N. L. Seed, “Photolithography on grossly non-planar substrates,” in Conference on High Density Microsystem Design and Packaging and Component Failure Analysis (IEEE, 2005), pp. 442–446.

Nellissen, T. J.

F. Wyrowski, E.-B. Kley, S. Buehling, T. J. Nellissen, L. Wang, and M. Dirkzwager, “Proximity printing by wave-optically designed masks,” Proc. SPIE 4436, 130–139 (2001).
[Crossref]

Poon, T.-C.

Purvis, A.

J. J. Toriz-Garcia, J. J. Cowling, G. L. Williams, Q. Bai, N. L. Seed, A. Tennant, R. McWilliam, A. Purvis, F. B. Soulard, and P. A. Ivey, “Fabrication of a 3D electrically small antenna using holographic photolithography,” J. Micromech. Microeng. 23, 055010 (2013).
[Crossref]

J. J. Cowling, G. L. Williams, A. Purvis, R. McWilliam, J. J. Toriz-Garcia, N. L. Seed, F. B. Soulard, and P. A. Ivey, “Three-dimensional holographic lithography by an iterative algorithm,” Opt. Lett. 36, 2495–2497 (2011).
[Crossref]

A. Maiden, R. McWilliam, A. Purvis, S. Johnson, G. L. Williams, N. L. Seed, and P. A. Ivey, “Nonplanar photolithography with computer-generated holograms,” Opt. Lett. 30, 1300–1302 (2005).
[Crossref]

R. McWilliam, A. Purvis, G. Williams, F. Soulard, and N. L. Seed, “High contrast patterns generated by phase-seeded CGH extensible to 3-D patterns and binary modulation,” in Digital Holography & 3-D Imaging Meeting, OSA Technical Digest (Optical Society of America, 2015), paper DTh4A.4.

G. L. Williams, R. McWilliam, A. Maiden, A. Purvis, P. A. Ivey, and N. L. Seed, “Photolithography on grossly non-planar substrates,” in Conference on High Density Microsystem Design and Packaging and Component Failure Analysis (IEEE, 2005), pp. 442–446.

Rosen, J.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “Phase determination for image and diffraction plane pictures in the electron microscope,” Optik 34, 275–284 (1971).

Seed, N. L.

J. J. Toriz-Garcia, J. J. Cowling, G. L. Williams, Q. Bai, N. L. Seed, A. Tennant, R. McWilliam, A. Purvis, F. B. Soulard, and P. A. Ivey, “Fabrication of a 3D electrically small antenna using holographic photolithography,” J. Micromech. Microeng. 23, 055010 (2013).
[Crossref]

J. J. Cowling, G. L. Williams, A. Purvis, R. McWilliam, J. J. Toriz-Garcia, N. L. Seed, F. B. Soulard, and P. A. Ivey, “Three-dimensional holographic lithography by an iterative algorithm,” Opt. Lett. 36, 2495–2497 (2011).
[Crossref]

A. Maiden, R. McWilliam, A. Purvis, S. Johnson, G. L. Williams, N. L. Seed, and P. A. Ivey, “Nonplanar photolithography with computer-generated holograms,” Opt. Lett. 30, 1300–1302 (2005).
[Crossref]

G. L. Williams, R. McWilliam, A. Maiden, A. Purvis, P. A. Ivey, and N. L. Seed, “Photolithography on grossly non-planar substrates,” in Conference on High Density Microsystem Design and Packaging and Component Failure Analysis (IEEE, 2005), pp. 442–446.

R. McWilliam, A. Purvis, G. Williams, F. Soulard, and N. L. Seed, “High contrast patterns generated by phase-seeded CGH extensible to 3-D patterns and binary modulation,” in Digital Holography & 3-D Imaging Meeting, OSA Technical Digest (Optical Society of America, 2015), paper DTh4A.4.

Shen, F.

Soulard, F.

R. McWilliam, A. Purvis, G. Williams, F. Soulard, and N. L. Seed, “High contrast patterns generated by phase-seeded CGH extensible to 3-D patterns and binary modulation,” in Digital Holography & 3-D Imaging Meeting, OSA Technical Digest (Optical Society of America, 2015), paper DTh4A.4.

Soulard, F. B.

J. J. Toriz-Garcia, J. J. Cowling, G. L. Williams, Q. Bai, N. L. Seed, A. Tennant, R. McWilliam, A. Purvis, F. B. Soulard, and P. A. Ivey, “Fabrication of a 3D electrically small antenna using holographic photolithography,” J. Micromech. Microeng. 23, 055010 (2013).
[Crossref]

J. J. Cowling, G. L. Williams, A. Purvis, R. McWilliam, J. J. Toriz-Garcia, N. L. Seed, F. B. Soulard, and P. A. Ivey, “Three-dimensional holographic lithography by an iterative algorithm,” Opt. Lett. 36, 2495–2497 (2011).
[Crossref]

Takaki, Y.

Tennant, A.

J. J. Toriz-Garcia, J. J. Cowling, G. L. Williams, Q. Bai, N. L. Seed, A. Tennant, R. McWilliam, A. Purvis, F. B. Soulard, and P. A. Ivey, “Fabrication of a 3D electrically small antenna using holographic photolithography,” J. Micromech. Microeng. 23, 055010 (2013).
[Crossref]

Toriz-Garcia, J. J.

J. J. Toriz-Garcia, J. J. Cowling, G. L. Williams, Q. Bai, N. L. Seed, A. Tennant, R. McWilliam, A. Purvis, F. B. Soulard, and P. A. Ivey, “Fabrication of a 3D electrically small antenna using holographic photolithography,” J. Micromech. Microeng. 23, 055010 (2013).
[Crossref]

J. J. Cowling, G. L. Williams, A. Purvis, R. McWilliam, J. J. Toriz-Garcia, N. L. Seed, F. B. Soulard, and P. A. Ivey, “Three-dimensional holographic lithography by an iterative algorithm,” Opt. Lett. 36, 2495–2497 (2011).
[Crossref]

Tsang, P.

Wang, A.

Wang, L.

F. Wyrowski, E.-B. Kley, S. Buehling, T. J. Nellissen, L. Wang, and M. Dirkzwager, “Proximity printing by wave-optically designed masks,” Proc. SPIE 4436, 130–139 (2001).
[Crossref]

Waters, J. P.

Wilkinson, T.

Williams, G.

R. McWilliam, A. Purvis, G. Williams, F. Soulard, and N. L. Seed, “High contrast patterns generated by phase-seeded CGH extensible to 3-D patterns and binary modulation,” in Digital Holography & 3-D Imaging Meeting, OSA Technical Digest (Optical Society of America, 2015), paper DTh4A.4.

Williams, G. L.

J. J. Toriz-Garcia, J. J. Cowling, G. L. Williams, Q. Bai, N. L. Seed, A. Tennant, R. McWilliam, A. Purvis, F. B. Soulard, and P. A. Ivey, “Fabrication of a 3D electrically small antenna using holographic photolithography,” J. Micromech. Microeng. 23, 055010 (2013).
[Crossref]

J. J. Cowling, G. L. Williams, A. Purvis, R. McWilliam, J. J. Toriz-Garcia, N. L. Seed, F. B. Soulard, and P. A. Ivey, “Three-dimensional holographic lithography by an iterative algorithm,” Opt. Lett. 36, 2495–2497 (2011).
[Crossref]

A. Maiden, R. McWilliam, A. Purvis, S. Johnson, G. L. Williams, N. L. Seed, and P. A. Ivey, “Nonplanar photolithography with computer-generated holograms,” Opt. Lett. 30, 1300–1302 (2005).
[Crossref]

G. L. Williams, R. McWilliam, A. Maiden, A. Purvis, P. A. Ivey, and N. L. Seed, “Photolithography on grossly non-planar substrates,” in Conference on High Density Microsystem Design and Packaging and Component Failure Analysis (IEEE, 2005), pp. 442–446.

Wong, A. K.-K.

A. K.-K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001).

Wyrowski, F.

F. Wyrowski, E.-B. Kley, S. Buehling, T. J. Nellissen, L. Wang, and M. Dirkzwager, “Proximity printing by wave-optically designed masks,” Proc. SPIE 4436, 130–139 (2001).
[Crossref]

Yokouchi, M.

Appl. Opt. (4)

J. Disp. Technol. (1)

E. Buckley, “Holographic laser projection,” J. Disp. Technol. 7, 135–140 (2011).
[Crossref]

J. Micromech. Microeng. (1)

J. J. Toriz-Garcia, J. J. Cowling, G. L. Williams, Q. Bai, N. L. Seed, A. Tennant, R. McWilliam, A. Purvis, F. B. Soulard, and P. A. Ivey, “Fabrication of a 3D electrically small antenna using holographic photolithography,” J. Micromech. Microeng. 23, 055010 (2013).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Opt. Lett. (3)

Optik (1)

R. W. Gerchberg and W. O. Saxton, “Phase determination for image and diffraction plane pictures in the electron microscope,” Optik 34, 275–284 (1971).

Proc. SPIE (1)

F. Wyrowski, E.-B. Kley, S. Buehling, T. J. Nellissen, L. Wang, and M. Dirkzwager, “Proximity printing by wave-optically designed masks,” Proc. SPIE 4436, 130–139 (2001).
[Crossref]

Other (4)

G. L. Williams, R. McWilliam, A. Maiden, A. Purvis, P. A. Ivey, and N. L. Seed, “Photolithography on grossly non-planar substrates,” in Conference on High Density Microsystem Design and Packaging and Component Failure Analysis (IEEE, 2005), pp. 442–446.

R. McWilliam, A. Purvis, G. Williams, F. Soulard, and N. L. Seed, “High contrast patterns generated by phase-seeded CGH extensible to 3-D patterns and binary modulation,” in Digital Holography & 3-D Imaging Meeting, OSA Technical Digest (Optical Society of America, 2015), paper DTh4A.4.

J. J. Cowling, “An iterative algorithm for lithography on three-dimensional surfaces,” Ph.D. thesis (Durham University, 2015).

A. K.-K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1. Geometry of line and example reconstruction by FCL for a target line length of 760 μm. (a) CGH phase. (b) Intensity of reconstructed pattern. (c) Horizontal intensity profile.
Fig. 2.
Fig. 2. Examples of troublesome pattern geometries.
Fig. 3.
Fig. 3. Illustrative example of pattern degradation for intersecting line pattern when using the FCL method. (a) CGH amplitude. (b) CGH phase. (c) Intensity of reconstructed pattern (inset showing magnified image of intersection region). (d) Profile of horizontal line intensity.
Fig. 4.
Fig. 4. Pattern degradation when using the FCL–FDF method. (a) CGH amplitude. (b) CGH phase. (c) Intensity of reconstructed pattern (inset showing magnified image of intersection region). (d) Profile of horizontal line intensity.
Fig. 5.
Fig. 5. Geometry used for point method. (a) Idealized line pattern shape. (b) Point-oriented representation of pattern. (c) Coordinate planes for the CGH and object.
Fig. 6.
Fig. 6. Examples of CGHs produced by the seeded-phase method. The top row shows normalized CGH amplitude. The bottom row shows CGH phase. Methods shown are: (a) uniform random phase, (b) analytical phase with α=3, and (c) analytical phase with α=7.
Fig. 7.
Fig. 7. Illustration of seeded-phase distributions applied to point object pattern. Clockwise from top left: uniform random, pseudo-random (p=4), analytical (α=4), and analytical (α=1).
Fig. 8.
Fig. 8. Simulated pattern reconstructions for different object seeded-phase methods. The left column shows the real part of point object distribution after addition of seeded phase; the middle column shows a 2D image of the reconstructed pattern intensity; the right column shows a cross-sectional plot of the reconstructed intensity taken along a horizontal line. (a) Uniform phase. (b) Uniform random phase. (c) Pseudo-random phase method (p=2). (d) Analytical method (α=4). All intensity graphs are normalized relative to a uniform phase result.
Fig. 9.
Fig. 9. Comparison of cross-sectional reconstructions using the analytical method. (a) Real part of the point object distribution (shown for α=4). (b)–(d) Cross-sectional plots of the reconstructed intensity for various α.
Fig. 10.
Fig. 10. Example of square pattern reconstruction. (a) Seeded-phase object (real part). (b) CGH. (c) Reconstruction resulting from the uniform phase method. (d) Reconstruction resulting from the analytical phase method (α=4). (e) Cross-sectional intensity profiles along the inner/outer squares.
Fig. 11.
Fig. 11. Measurement zones for determining contrast of the line intensity profile.
Fig. 12.
Fig. 12. Distribution of contrast for two lines intersecting at various locations. Column (a): object patterns. Column (b): contrast results for the analytical seeded-phase and pseudo-random phase methods. Column (c): cross-sectional plots of the reconstructed intensity profile for α=4 and continuous phase CGH. Column (d): cross-sectional plots of the reconstructed intensity profile for α=4 and binary phase CGH. All intensity results are individually normalized.
Fig. 13.
Fig. 13. Comparative results generated using the IFTM method, where contrast C for each case is indicated within the respective plot. Column (a): object patterns (as per Fig. 12). Column (b): cross-sectional plots of the reconstructed intensity profile using a continuous phase CGH. Column (c): cross-sectional plots of the reconstructed intensity profile using binary phase CGH. IFTM results were generated using 10 iterations.
Fig. 14.
Fig. 14. Procedure for analysis of contrast performance for different line intersection locations and a continuous phase CGH calculated by the point method. For each result, the location of the line intersection is altered within a 128×128 grid spaced by 6 μm.
Fig. 15.
Fig. 15. Experimental LCOS reconstruction of patterns. (a) Uniform-phase method. (b) Uniform random phase method. (c) Pseudo-random phase method (p=3). (d) Seeded-phase method (α=4).
Fig. 16.
Fig. 16. Experimental results. (a) SLM reconstruction with (b) enlarged view. (c) Metal tracks generated following photoresist exposure and (d) close-up view of the track intersection.

Tables (2)

Tables Icon

Table 1. Summary of Design Parameters Used for Evaluation

Tables Icon

Table 2. Contrast Analysis for Detailed Study

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

H(u,v)=exp(jkv22z)rect(Lu,Lv),
H(u,v)=exp(jkv22z)F(u)rect(Lu,Lv),
F(u)=12a2a1exp(jπ2a2)da,
a1=2λZ(L2+u),a2=2λZ(L2u).
FZP(u,v:xn,ym)=exp{jk2z[(uxn)2+(vym)2]}circ(xn,ym,r),
circ(xn,ym,r)={1(uxn)2+(vym)2r0(uxn)2+(vym)2>r.
H(u,v)=n,mFZP(u,v:xn,ym).
Tn,m=n=1Nm=1MO(x,y)δ(xnΔx,ymΔy).
Qn,m=Tn,mexp(jψn,m).
H(u,v)=(1A)n,m[Qn,mFZP(u,v:xn,ym)]rect(uLu,vLv),
φ(x,y)=παλz(x2+y2),
C=IminImaxImax+Imin,

Metrics