Abstract

We demonstrated holographic multi-projection using the random phase-free method and the iterative method. Holographic multi-projection is a method of projecting multiple different images focused on different screens at the same time. The random phase-free method succeeded in improving the image quality. By applying the iterative method to the random phase-free method, the image quality was improved further. The results of our numerical reconstruction and optical experiments confirm that the proposed method improves the image quality. The peak signal-to-noise ratios of the reconstructed images using the proposed method and the conventional method are 30.66 and 13.61 dB, respectively.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Color computer-generated hologram generation using the random phase-free method and color space conversion

Tomoyoshi Shimobaba, Michał Makowski, Yuki Nagahama, Yutaka Endo, Ryuji Hirayama, Daisuke Hiyama, Satoki Hasegawa, Marie Sano, Takashi Kakue, Minoru Oikawa, Takashige Sugie, Naoki Takada, and Tomoyoshi Ito
Appl. Opt. 55(15) 4159-4165 (2016)

Speeding up image quality improvement in random phase-free holograms using ringing artifact characteristics

Yuki Nagahama, Tomoyoshi Shimobaba, Takashi Kakue, Nobuyuki Masuda, and Tomoyoshi Ito
Appl. Opt. 56(13) F61-F66 (2017)

Image quality improvement of random phase-free holograms by addressing the cause of ringing artifacts

Yuki Nagahama, Tomoyoshi Shimobaba, Takashi Kakue, Yasuhiro Takaki, and Tomoyoshi Ito
Appl. Opt. 58(9) 2146-2151 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription