Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Energy feedback freeform lenses for uniform illumination of extended light source LEDs

Not Accessible

Your library or personal account may give you access

Abstract

Using freeform lenses to construct uniform illumination systems is important in light-emitting diode (LED) devices. In this paper, the energy feedback design is used for freeform lens (EFFL) constructions by solving a set of partial differential equations that describe the mapping relationships between the source and the illumination pattern. The simulation results show that the method can overcome the illumination deviation caused by the extended light source (ELS) problem. Furthermore, a uniformity of 95.6% is obtained for chip-on-board (COB) compact LED devices. As such, prototype LEDs manufactured with the proposed freeform lenses demonstrate significant improvements in luminous efficiency and emission uniformity.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Freeform lens design for light-emitting diode uniform illumination by using a method of source–target luminous intensity mapping

Jin-Jia Chen, Ze-Yu Huang, Te-Shu Liu, Ming-Da Tsai, and Kuang-Lung Huang
Appl. Opt. 54(28) E146-E152 (2015)

Freeform LED lens for uniform illumination

Yi Ding, Xu Liu, Zhen-rong Zheng, and Pei-fu Gu
Opt. Express 16(17) 12958-12966 (2008)

Freeform surface lens for LED uniform illumination

Zheng Zhenrong, Hao Xiang, and Liu Xu
Appl. Opt. 48(35) 6627-6634 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.