Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Hybrid integrated optical waveguides in glass for enhanced visible photoluminescence of nanoemitters

Not Accessible

Your library or personal account may give you access

Abstract

Integrated optical devices able to control light–matter interactions on the nanoscale have attracted the attention of the scientific community in recent years. However, most of these devices are based on silicon waveguides, limiting their use for telecommunication wavelengths. In this contribution, we propose an integrated device that operates with light in the visible spectrum. The proposed device is a hybrid structure consisting of a high-refractive-index layer placed on top of an ion-exchanged glass waveguide. We demonstrate that this hybrid structure serves as an efficient light coupler for the excitation of nanoemitters. The numerical and experimental results show that the device can enhance the electromagnetic field confinement up to 11 times, allowing a higher photoluminescence signal from nanocrystals placed on its surface. The designed device opens new perspectives in the generation of new optical devices suitable for quantum information or for optical sensing.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Towards the integration of nanoemitters by direct laser writing on optical glass waveguides

Xiaolun Xu, Aurélie Broussier, Tiziana Ritacco, Mackrine Nahra, Fabien Geoffray, Ali Issa, Safi Jradi, Renaud Bachelot, Christophe Couteau, and Sylvain Blaize
Photon. Res. 8(9) 1541-1550 (2020)

Photoluminescence from colloidal CdS-CdSe-CdS quantum wells

Jianfeng Xu, David Battaglia, Xiaogang Peng, and Min Xiao
J. Opt. Soc. Am. B 22(5) 1112-1116 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.