Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Simulation of fluorescence enhancement by an AFM tip on a gold particle quenched emitter

Not Accessible

Your library or personal account may give you access

Abstract

The local field enhancement in proximity of metallic nanostructures can strongly modify the excitation and emission behaviors for the nearby fluorophore. In this paper, Maxwell’s time-dependent curl equations are solved by the finite-difference time-domain method to investigate the electric field enhancement around an atomic-force microscopy (AFM) tip and a Au nanosphere (NS). To lower the background fluorescence signal, we proposed to induce the fluorescence quenching by placing the emitter at an optimized position that is 2 nm away from the Au NS. The AFM tip is thereby moved to the vicinity of the emitter quenched by the Au NS. The fluorescence enhancement factor (FEF) increases rapidly when the tip approaches the Au NS. A maximum FEF of 1500-fold is obtained when their separation is 4 nm. By laterally scanning the tip over the Au NS at a constant height, the full width at half-maximum of fluorescence’s signal peak with respect to tip position is around 20 nm. This high sensitivity of the FEF on the relative position of the tip and Au NS provides valuable information to guide future experiments on high-resolution optical imaging and fluorescence enhancement for high quantum yield emitters.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Fluorescence enhancement and quenching in tip-enhanced fluorescence spectroscopy

Justin R. Isaac and Huizhong Xu
OSA Continuum 1(3) 899-909 (2018)

Gold-coated AFM tips for tip-enhanced Raman spectroscopy: theoretical calculation and experimental demonstration

Lingyan Meng, Tengxiang Huang, Xiang Wang, Shu Chen, Zhilin Yang, and Bin Ren
Opt. Express 23(11) 13804-13813 (2015)

Metal-enhanced fluorescence of an organic fluorophore using gold particles

Jian Zhang and Joseph R. Lakowicz
Opt. Express 15(5) 2598-2606 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.