Abstract

Transparent conductive oxide (TCO) materials have been widely used as the front electrodes of thin-film amorphous silicon (a-Si:H) solar cells. To improve the performance of solar cells, textured front TCO is required as the optical layer which effectively scatters the incoming light and thus enhances the photon absorption within the device. One promising TCO material is aluminum-doped zinc oxide (AZO), which is most commonly prepared by magnetron sputtering. After deposition, sputtered AZO films are typically wet-chemically etched using diluted hydrochloric (HCl) or hydrofluoric (HF) acid to obtain rough surface morphologies. In this paper, we report the effects of a textured AZO front electrode on the performance of a-Si:H solar cells based on optical scattering modeling and electrical device simulations, involving four different AZO surface morphologies. The simulated light scattering behaviors indicate that a better textured surface not only scatters more light, but also allows more light get transmitted into the absorber (90% of visible light), due to greatly reduced front reflection by the rough surface. Device simulation results show that the two-step AZO texturing process should give improved a-Si:H solar cell performance, with an enhanced short-circuit current density of 16.5  mA/cm2, which leads to a high photovoltaic (PV) efficiency of 9.9%.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thin-film a-Si:H solar cells processed on aluminum-induced texture (AIT) glass superstrates: prediction of light absorption enhancement

Nasim Sahraei, Marius Peters, Selvaraj Venkataraj, Armin G. Aberle, Sonya Calnan, Sven Ring, Bernd Stannowski, Rutger Schlatmann, and Rolf Stangl
Appl. Opt. 54(14) 4366-4373 (2015)

Analytical solution for haze values of aluminium-induced texture (AIT) glass superstrates for a-Si:H solar cells

Nasim Sahraei, Karen Forberich, Selvaraj Venkataraj, Armin G. Aberle, and Marius Peters
Opt. Express 22(S1) A53-A67 (2014)

Nano-patterned glass superstrates with different aspect ratios for enhanced light harvesting in a-Si:H thin film solar cells

Ting-Gang Chen, Peichen Yu, Yu-Lin Tsai, Chang-Hong Shen, Jia-Min Shieh, Min-An Tsai, and Hao-Chung Kuo
Opt. Express 20(S3) A412-A417 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription