Abstract

This paper presents an optical stabilization system based on deformable mirrors (DMs) for retina-like sensors. This system achieves image stabilization by changing the reflective plate of the DM’s compensating tilt angle. The mathematical model is constructed with relative parameters, and the simulation experiments and parameter analysis are discussed to verify the system’s reliability. The experimental results show that this system achieved optical image stabilization. The maximum relative error of the compensation angle is 8.78%. The system is close to the diffraction limit, and the distortion is less than 0.33%. This study presents an image stabilization system and offers possible improvement in the aberrations in the system, which will provide great support to retina-like sensors.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Membrane-based deformable mirror: intrinsic aberrations and alignment issues

A. Raja Bayanna, Rohan E. Louis, S. Chatterjee, Shibu K. Mathew, and P. Venkatakrishnan
Appl. Opt. 54(7) 1727-1736 (2015)

Simulational and experimental investigation on the dynamic high frequency aberration of the deformable mirror

Licheng Sun, Lei Huang, Meng Yan, Junbiao Fan, Yamin Zheng, and Chuang Sun
Opt. Express 25(26) 32853-32866 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription