Abstract

A two-dimensional thin film thickness model based on the geometry of a commercial coater which can calculate more effectively the profiles of linear variable filters (LVFs) has been developed. This is done by isolating the substrate plane as an independent coordinate (local coordinate), while the rotation and translation matrices are used to establish the coordinate transformation and combine the characteristic vector with the step function to build a borderline which can conclude whether the local mask will block the deposition or not. The height of the local mask has been increased up to 40 mm in the proposed model, and two-dimensional simulations are developed to obtain a thin film profile deposition on the substrate inside the evaporation chamber to achieve the specific request of producing a LVF zone width in a more economical way than previously reported [Opt. Express 23, 5102 (2015) [CrossRef]  ].

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analytical modeling and tolerance analysis of a linear variable filter for spectral order sorting

Cheng-Hao Ko, Kuei-Ying Chang, and You-Min Huang
Opt. Express 23(4) 5102-5116 (2015)

Masking mechanisms applied to thin-film coatings for the manufacturing of linear variable filters for two-dimensional array detectors

Laëtitia Abel-Tibérini, Frédéric Lemarquis, and Michel Lequime
Appl. Opt. 47(30) 5706-5714 (2008)

Low-cost hyper-spectral imaging system using a linear variable bandpass filter for agritech applications

Shigeng Song, Des Gibson, Sam Ahmadzadeh, Hin On Chu, Barry Warden, Russell Overend, Fraser Macfarlane, Paul Murray, Stephen Marshall, Matt Aitkenhead, Damian Bienkowski, and Russell Allison
Appl. Opt. 59(5) A167-A175 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (49)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription