Abstract

Aimed at the optical evaluation of pollution levels caused by rock dust in an underground coal mine tunneling face, the optimal detection line and optical channel were investigated. The spatial distribution of airborne rock dust under local mining and ventilation conditions was simulated by the computational fluid dynamics method; thus, combined with the scattering and absorption properties of dust particles and gas molecules, the spectral transmission characteristics of a polluted atmosphere, including dust aerosols within 4004000  cm1, were obtained. By eliminating the optical background of mine gases, the pure infrared signals of rock dust were further analyzed. Based on the comparison results, the detection line, which is 1.5 m high and 0.3 m away from the right wall, was determined to be the best observation position, and a waveband of 15051525  cm1 was selected to estimate the dust concentration. In addition, a dual-band detection method was presented, which can simultaneously identify the dust distribution and dispersion.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental investigation on the infrared refraction and extinction properties of rock dust in tunneling face of coal mine

Wenzheng Wang, Yanming Wang, and Guoqing Shi
Appl. Opt. 54(35) 10532-10540 (2015)

Multiband infrared inversion for low-concentration methane monitoring in a confined dust-polluted atmosphere

Wenzheng Wang, Yanming Wang, Wujun Song, and Xueqin Li
Appl. Opt. 56(9) 2548-2555 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. L. Wang, L. Y. Feng, S. Davidsson, and M. Höök, “Chinese coal supply and future production outlooks,” Energy 60, 204–214 (2013).
    [Crossref]
  2. B. Q. Lin and J. H. Liu, “Estimating coal production peak and trends of coal imports in China,” Energy Policy 38, 512–519 (2010).
    [Crossref]
  3. J. Z. Wang, Y. Dong, J. Wu, R. Mu, and H. Jiang, “Coal production forecast and low carbon policies in China,” Energy Policy 39, 5970–5979 (2011).
    [Crossref]
  4. E. Petavratzi, S. Kingman, and I. Lowndes, “Particulates from mining operations: A review of sources, effects and regulations,” Miner. Eng. 18, 1183–1199 (2005).
    [Crossref]
  5. K. J. Candra, S. A. Pulung, and M. A. Sadashiv, “Dust dispersion and management in underground mining faces,” Int. J. Min. Sci. Tech. 24, 39–44 (2014).
    [Crossref]
  6. J. Toraño, S. Torno, M. Menéndez, and M. Gent, “Auxiliary ventilation in mining roadways driven with roadheaders: Validated CFD modelling of dust behavior,” Tunn. Undergr. Sp. Tech. 26, 201–210 (2011).
    [Crossref]
  7. S. D. Mamuya, M. Bratveit, J. Mwaiselage, Y. S. Mashalla, and B. Moen, “High exposure to respirable dust and quartz in a labour-intensive coal mine in Tanzania,” Ann. Occup. Hyg. 50, 197–204 (2005).
    [Crossref]
  8. V. Castranova and V. Vallyathan, “Silicosis and coal workers’ pneumoconiosis,” Environ. Health Persp. 108, 675–684 (2000).
    [Crossref]
  9. M. Onder and S. Onder, “Evaluation of occupational exposures to respirable dust in underground coal mines,” Industrial Health 47, 43–49 (2009).
    [Crossref]
  10. P. Lilienfeld and J. Dulchinos, “Portable Instantaneous Mass Monitor for Coal Mine Dust,” Am. Ind. Hyg. Assoc. J. 33, 136–145 (1972).
    [Crossref]
  11. A. H. Lehocky and P. L. Williams, “Comparison of respirable samplers to direct-reading real-time aerosol monitors for measuring coal dust,” Am. Ind. Hyg. Assoc. J. 57, 1013–1018 (1996).
    [Crossref]
  12. S. Su, H. W. Chen, P. Teakle, and S. Xue, “Characteristics of coal mine ventilation air flows,” J. Environ. Manage. 86, 44–62 (2008).
    [Crossref]
  13. T. Ren, Z. W. Wang, and G. Cooper, “CFD modelling of ventilation and dust flow behaviour above an underground bin and the design of an innovative dust mitigation system,” Tunn. Undergr. Sp. Tech. 41, 241–254 (2014).
    [Crossref]
  14. W. Z. Wang, Y. M. Wang, G. Q. Shi, and D. M. Wang, “Numerical study on infrared optical property of diffuse coal particles in mine fully mechanized working combined with CFD method,” Math. Probl. Eng. 2015, 501401 (2015).
  15. Z. W. Wang and T. Ren, “Investigation of airflow and respirable dust flow behaviour above an underground bin,” Powder Technol. 250, 103–114 (2013).
    [Crossref]
  16. Y. Yuan, H. L. Yi, Y. Shuai, B. Liu, and H. P. Tan, “Inverse problem for aerosol particle size distribution using SPSO associated with multi-lognormal distribution model,” Atmos. Environ. 45, 4892–4897 (2011).
    [Crossref]
  17. W. Z. Wang, Y. M. Wang, and G. Q. Shi, “Forward research on transmission characteristics of near-surface particulate-matter-polluted atmosphere in mining area combined with CFD method,” Opt. Express 23, A1010–A1023 (2015).
    [Crossref]
  18. Y. Yuan, Y. Shuai, X. W. Li, B. Liu, and H. P. Tan, “Using a new aerosol relative optical thickness concept to identify aerosol particle species,” Atmos. Res. 150, 1–11 (2014).
    [Crossref]
  19. X. Ben, H. L. Yi, and H. P. Tan, “Polarized radiative transfer in an arbitrary multilayer semitransparent medium,” Appl. Opt. 53, 1427–1441 (2014).
    [Crossref]
  20. R. Koelemeijer, C. Homan, and J. Matthijsen, “Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe,” Atmos. Environ. 40, 5304–5315 (2006).
    [Crossref]
  21. C. L. Tien, Thermal Radiation Properties of Gases (Academic, 1968).
  22. L. X. Ma, F. Q. Wang, C. G. Wang, C. C. Wang, and J. Y. Tan, “Monte Carlo simulation of spectral reflectance and BRDF of the bubble layer in the upper ocean,” Opt. Express 23, 24274–24289 (2015).
    [Crossref]
  23. W. Z. Wang, Y. M. Wang, and G. Q. Shi, “Experimental investigation on the infrared refraction and extinction properties of rock dust in tunneling face of coal mine,” Appl. Opt. 54, 10532–10540 (2015).
    [Crossref]
  24. H. P. Tan, L. H. Liu, H. L. Yi, J. M. Zhao, H. Qi, and J. Y. Tan, “Recent progress in computational thermal radiative transfer,” Chin. Sci. Bull. 54, 4135–4147 (2009).
    [Crossref]
  25. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
  26. H. L. Wei, X. H. Chen, R. Z. Rao, Y. J. Wang, and P. Yang, “A moderate-spectral-resolution transmittance model based on fitting the line-by-line calculation,” Opt. Express 15, 8360–8370 (2007).
    [Crossref]
  27. Y. S. Sun, J. Ma, and B. W. Li, “Spectral collocation method for convective-radiative transfer of a moving rod with variable thermal conductivity,” Int. J. Therm. Sci. 90, 187–196 (2015).
    [Crossref]
  28. F. Q. Wang, J. Y. Tan, Y. Shuai, H. P. Tan, and S. X. Chu, “Thermal performance analyses of porous media solar receiver with different irradiative transfer models,” Int. J. Heat Mass Tran. 78, 7–16 (2014).
    [Crossref]
  29. J. Ma, B. W. Li, and J. R. Howell, “Thermal radiation heat transfer in one- and two-dimensional enclosures using the spectral collocation method with full spectrum k-distribution model,” Int. J. Heat Mass Tran. 71, 35–43 (2014).
    [Crossref]
  30. Z. X. Guo and S. Kumar, “Three-dimensional discrete ordinates method in transient radiative transfer,” J. Thermophys. Heat Tr. 16, 289–296 (2002).
    [Crossref]

2015 (5)

2014 (6)

F. Q. Wang, J. Y. Tan, Y. Shuai, H. P. Tan, and S. X. Chu, “Thermal performance analyses of porous media solar receiver with different irradiative transfer models,” Int. J. Heat Mass Tran. 78, 7–16 (2014).
[Crossref]

J. Ma, B. W. Li, and J. R. Howell, “Thermal radiation heat transfer in one- and two-dimensional enclosures using the spectral collocation method with full spectrum k-distribution model,” Int. J. Heat Mass Tran. 71, 35–43 (2014).
[Crossref]

T. Ren, Z. W. Wang, and G. Cooper, “CFD modelling of ventilation and dust flow behaviour above an underground bin and the design of an innovative dust mitigation system,” Tunn. Undergr. Sp. Tech. 41, 241–254 (2014).
[Crossref]

X. Ben, H. L. Yi, and H. P. Tan, “Polarized radiative transfer in an arbitrary multilayer semitransparent medium,” Appl. Opt. 53, 1427–1441 (2014).
[Crossref]

Y. Yuan, Y. Shuai, X. W. Li, B. Liu, and H. P. Tan, “Using a new aerosol relative optical thickness concept to identify aerosol particle species,” Atmos. Res. 150, 1–11 (2014).
[Crossref]

K. J. Candra, S. A. Pulung, and M. A. Sadashiv, “Dust dispersion and management in underground mining faces,” Int. J. Min. Sci. Tech. 24, 39–44 (2014).
[Crossref]

2013 (2)

J. L. Wang, L. Y. Feng, S. Davidsson, and M. Höök, “Chinese coal supply and future production outlooks,” Energy 60, 204–214 (2013).
[Crossref]

Z. W. Wang and T. Ren, “Investigation of airflow and respirable dust flow behaviour above an underground bin,” Powder Technol. 250, 103–114 (2013).
[Crossref]

2011 (3)

Y. Yuan, H. L. Yi, Y. Shuai, B. Liu, and H. P. Tan, “Inverse problem for aerosol particle size distribution using SPSO associated with multi-lognormal distribution model,” Atmos. Environ. 45, 4892–4897 (2011).
[Crossref]

J. Z. Wang, Y. Dong, J. Wu, R. Mu, and H. Jiang, “Coal production forecast and low carbon policies in China,” Energy Policy 39, 5970–5979 (2011).
[Crossref]

J. Toraño, S. Torno, M. Menéndez, and M. Gent, “Auxiliary ventilation in mining roadways driven with roadheaders: Validated CFD modelling of dust behavior,” Tunn. Undergr. Sp. Tech. 26, 201–210 (2011).
[Crossref]

2010 (1)

B. Q. Lin and J. H. Liu, “Estimating coal production peak and trends of coal imports in China,” Energy Policy 38, 512–519 (2010).
[Crossref]

2009 (2)

M. Onder and S. Onder, “Evaluation of occupational exposures to respirable dust in underground coal mines,” Industrial Health 47, 43–49 (2009).
[Crossref]

H. P. Tan, L. H. Liu, H. L. Yi, J. M. Zhao, H. Qi, and J. Y. Tan, “Recent progress in computational thermal radiative transfer,” Chin. Sci. Bull. 54, 4135–4147 (2009).
[Crossref]

2008 (1)

S. Su, H. W. Chen, P. Teakle, and S. Xue, “Characteristics of coal mine ventilation air flows,” J. Environ. Manage. 86, 44–62 (2008).
[Crossref]

2007 (1)

2006 (1)

R. Koelemeijer, C. Homan, and J. Matthijsen, “Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe,” Atmos. Environ. 40, 5304–5315 (2006).
[Crossref]

2005 (2)

E. Petavratzi, S. Kingman, and I. Lowndes, “Particulates from mining operations: A review of sources, effects and regulations,” Miner. Eng. 18, 1183–1199 (2005).
[Crossref]

S. D. Mamuya, M. Bratveit, J. Mwaiselage, Y. S. Mashalla, and B. Moen, “High exposure to respirable dust and quartz in a labour-intensive coal mine in Tanzania,” Ann. Occup. Hyg. 50, 197–204 (2005).
[Crossref]

2002 (1)

Z. X. Guo and S. Kumar, “Three-dimensional discrete ordinates method in transient radiative transfer,” J. Thermophys. Heat Tr. 16, 289–296 (2002).
[Crossref]

2000 (1)

V. Castranova and V. Vallyathan, “Silicosis and coal workers’ pneumoconiosis,” Environ. Health Persp. 108, 675–684 (2000).
[Crossref]

1996 (1)

A. H. Lehocky and P. L. Williams, “Comparison of respirable samplers to direct-reading real-time aerosol monitors for measuring coal dust,” Am. Ind. Hyg. Assoc. J. 57, 1013–1018 (1996).
[Crossref]

1972 (1)

P. Lilienfeld and J. Dulchinos, “Portable Instantaneous Mass Monitor for Coal Mine Dust,” Am. Ind. Hyg. Assoc. J. 33, 136–145 (1972).
[Crossref]

Ben, X.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

Bratveit, M.

S. D. Mamuya, M. Bratveit, J. Mwaiselage, Y. S. Mashalla, and B. Moen, “High exposure to respirable dust and quartz in a labour-intensive coal mine in Tanzania,” Ann. Occup. Hyg. 50, 197–204 (2005).
[Crossref]

Candra, K. J.

K. J. Candra, S. A. Pulung, and M. A. Sadashiv, “Dust dispersion and management in underground mining faces,” Int. J. Min. Sci. Tech. 24, 39–44 (2014).
[Crossref]

Castranova, V.

V. Castranova and V. Vallyathan, “Silicosis and coal workers’ pneumoconiosis,” Environ. Health Persp. 108, 675–684 (2000).
[Crossref]

Chen, H. W.

S. Su, H. W. Chen, P. Teakle, and S. Xue, “Characteristics of coal mine ventilation air flows,” J. Environ. Manage. 86, 44–62 (2008).
[Crossref]

Chen, X. H.

Chu, S. X.

F. Q. Wang, J. Y. Tan, Y. Shuai, H. P. Tan, and S. X. Chu, “Thermal performance analyses of porous media solar receiver with different irradiative transfer models,” Int. J. Heat Mass Tran. 78, 7–16 (2014).
[Crossref]

Cooper, G.

T. Ren, Z. W. Wang, and G. Cooper, “CFD modelling of ventilation and dust flow behaviour above an underground bin and the design of an innovative dust mitigation system,” Tunn. Undergr. Sp. Tech. 41, 241–254 (2014).
[Crossref]

Davidsson, S.

J. L. Wang, L. Y. Feng, S. Davidsson, and M. Höök, “Chinese coal supply and future production outlooks,” Energy 60, 204–214 (2013).
[Crossref]

Dong, Y.

J. Z. Wang, Y. Dong, J. Wu, R. Mu, and H. Jiang, “Coal production forecast and low carbon policies in China,” Energy Policy 39, 5970–5979 (2011).
[Crossref]

Dulchinos, J.

P. Lilienfeld and J. Dulchinos, “Portable Instantaneous Mass Monitor for Coal Mine Dust,” Am. Ind. Hyg. Assoc. J. 33, 136–145 (1972).
[Crossref]

Feng, L. Y.

J. L. Wang, L. Y. Feng, S. Davidsson, and M. Höök, “Chinese coal supply and future production outlooks,” Energy 60, 204–214 (2013).
[Crossref]

Gent, M.

J. Toraño, S. Torno, M. Menéndez, and M. Gent, “Auxiliary ventilation in mining roadways driven with roadheaders: Validated CFD modelling of dust behavior,” Tunn. Undergr. Sp. Tech. 26, 201–210 (2011).
[Crossref]

Guo, Z. X.

Z. X. Guo and S. Kumar, “Three-dimensional discrete ordinates method in transient radiative transfer,” J. Thermophys. Heat Tr. 16, 289–296 (2002).
[Crossref]

Homan, C.

R. Koelemeijer, C. Homan, and J. Matthijsen, “Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe,” Atmos. Environ. 40, 5304–5315 (2006).
[Crossref]

Höök, M.

J. L. Wang, L. Y. Feng, S. Davidsson, and M. Höök, “Chinese coal supply and future production outlooks,” Energy 60, 204–214 (2013).
[Crossref]

Howell, J. R.

J. Ma, B. W. Li, and J. R. Howell, “Thermal radiation heat transfer in one- and two-dimensional enclosures using the spectral collocation method with full spectrum k-distribution model,” Int. J. Heat Mass Tran. 71, 35–43 (2014).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

Jiang, H.

J. Z. Wang, Y. Dong, J. Wu, R. Mu, and H. Jiang, “Coal production forecast and low carbon policies in China,” Energy Policy 39, 5970–5979 (2011).
[Crossref]

Kingman, S.

E. Petavratzi, S. Kingman, and I. Lowndes, “Particulates from mining operations: A review of sources, effects and regulations,” Miner. Eng. 18, 1183–1199 (2005).
[Crossref]

Koelemeijer, R.

R. Koelemeijer, C. Homan, and J. Matthijsen, “Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe,” Atmos. Environ. 40, 5304–5315 (2006).
[Crossref]

Kumar, S.

Z. X. Guo and S. Kumar, “Three-dimensional discrete ordinates method in transient radiative transfer,” J. Thermophys. Heat Tr. 16, 289–296 (2002).
[Crossref]

Lehocky, A. H.

A. H. Lehocky and P. L. Williams, “Comparison of respirable samplers to direct-reading real-time aerosol monitors for measuring coal dust,” Am. Ind. Hyg. Assoc. J. 57, 1013–1018 (1996).
[Crossref]

Li, B. W.

Y. S. Sun, J. Ma, and B. W. Li, “Spectral collocation method for convective-radiative transfer of a moving rod with variable thermal conductivity,” Int. J. Therm. Sci. 90, 187–196 (2015).
[Crossref]

J. Ma, B. W. Li, and J. R. Howell, “Thermal radiation heat transfer in one- and two-dimensional enclosures using the spectral collocation method with full spectrum k-distribution model,” Int. J. Heat Mass Tran. 71, 35–43 (2014).
[Crossref]

Li, X. W.

Y. Yuan, Y. Shuai, X. W. Li, B. Liu, and H. P. Tan, “Using a new aerosol relative optical thickness concept to identify aerosol particle species,” Atmos. Res. 150, 1–11 (2014).
[Crossref]

Lilienfeld, P.

P. Lilienfeld and J. Dulchinos, “Portable Instantaneous Mass Monitor for Coal Mine Dust,” Am. Ind. Hyg. Assoc. J. 33, 136–145 (1972).
[Crossref]

Lin, B. Q.

B. Q. Lin and J. H. Liu, “Estimating coal production peak and trends of coal imports in China,” Energy Policy 38, 512–519 (2010).
[Crossref]

Liu, B.

Y. Yuan, Y. Shuai, X. W. Li, B. Liu, and H. P. Tan, “Using a new aerosol relative optical thickness concept to identify aerosol particle species,” Atmos. Res. 150, 1–11 (2014).
[Crossref]

Y. Yuan, H. L. Yi, Y. Shuai, B. Liu, and H. P. Tan, “Inverse problem for aerosol particle size distribution using SPSO associated with multi-lognormal distribution model,” Atmos. Environ. 45, 4892–4897 (2011).
[Crossref]

Liu, J. H.

B. Q. Lin and J. H. Liu, “Estimating coal production peak and trends of coal imports in China,” Energy Policy 38, 512–519 (2010).
[Crossref]

Liu, L. H.

H. P. Tan, L. H. Liu, H. L. Yi, J. M. Zhao, H. Qi, and J. Y. Tan, “Recent progress in computational thermal radiative transfer,” Chin. Sci. Bull. 54, 4135–4147 (2009).
[Crossref]

Lowndes, I.

E. Petavratzi, S. Kingman, and I. Lowndes, “Particulates from mining operations: A review of sources, effects and regulations,” Miner. Eng. 18, 1183–1199 (2005).
[Crossref]

Ma, J.

Y. S. Sun, J. Ma, and B. W. Li, “Spectral collocation method for convective-radiative transfer of a moving rod with variable thermal conductivity,” Int. J. Therm. Sci. 90, 187–196 (2015).
[Crossref]

J. Ma, B. W. Li, and J. R. Howell, “Thermal radiation heat transfer in one- and two-dimensional enclosures using the spectral collocation method with full spectrum k-distribution model,” Int. J. Heat Mass Tran. 71, 35–43 (2014).
[Crossref]

Ma, L. X.

Mamuya, S. D.

S. D. Mamuya, M. Bratveit, J. Mwaiselage, Y. S. Mashalla, and B. Moen, “High exposure to respirable dust and quartz in a labour-intensive coal mine in Tanzania,” Ann. Occup. Hyg. 50, 197–204 (2005).
[Crossref]

Mashalla, Y. S.

S. D. Mamuya, M. Bratveit, J. Mwaiselage, Y. S. Mashalla, and B. Moen, “High exposure to respirable dust and quartz in a labour-intensive coal mine in Tanzania,” Ann. Occup. Hyg. 50, 197–204 (2005).
[Crossref]

Matthijsen, J.

R. Koelemeijer, C. Homan, and J. Matthijsen, “Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe,” Atmos. Environ. 40, 5304–5315 (2006).
[Crossref]

Menéndez, M.

J. Toraño, S. Torno, M. Menéndez, and M. Gent, “Auxiliary ventilation in mining roadways driven with roadheaders: Validated CFD modelling of dust behavior,” Tunn. Undergr. Sp. Tech. 26, 201–210 (2011).
[Crossref]

Moen, B.

S. D. Mamuya, M. Bratveit, J. Mwaiselage, Y. S. Mashalla, and B. Moen, “High exposure to respirable dust and quartz in a labour-intensive coal mine in Tanzania,” Ann. Occup. Hyg. 50, 197–204 (2005).
[Crossref]

Mu, R.

J. Z. Wang, Y. Dong, J. Wu, R. Mu, and H. Jiang, “Coal production forecast and low carbon policies in China,” Energy Policy 39, 5970–5979 (2011).
[Crossref]

Mwaiselage, J.

S. D. Mamuya, M. Bratveit, J. Mwaiselage, Y. S. Mashalla, and B. Moen, “High exposure to respirable dust and quartz in a labour-intensive coal mine in Tanzania,” Ann. Occup. Hyg. 50, 197–204 (2005).
[Crossref]

Onder, M.

M. Onder and S. Onder, “Evaluation of occupational exposures to respirable dust in underground coal mines,” Industrial Health 47, 43–49 (2009).
[Crossref]

Onder, S.

M. Onder and S. Onder, “Evaluation of occupational exposures to respirable dust in underground coal mines,” Industrial Health 47, 43–49 (2009).
[Crossref]

Petavratzi, E.

E. Petavratzi, S. Kingman, and I. Lowndes, “Particulates from mining operations: A review of sources, effects and regulations,” Miner. Eng. 18, 1183–1199 (2005).
[Crossref]

Pulung, S. A.

K. J. Candra, S. A. Pulung, and M. A. Sadashiv, “Dust dispersion and management in underground mining faces,” Int. J. Min. Sci. Tech. 24, 39–44 (2014).
[Crossref]

Qi, H.

H. P. Tan, L. H. Liu, H. L. Yi, J. M. Zhao, H. Qi, and J. Y. Tan, “Recent progress in computational thermal radiative transfer,” Chin. Sci. Bull. 54, 4135–4147 (2009).
[Crossref]

Rao, R. Z.

Ren, T.

T. Ren, Z. W. Wang, and G. Cooper, “CFD modelling of ventilation and dust flow behaviour above an underground bin and the design of an innovative dust mitigation system,” Tunn. Undergr. Sp. Tech. 41, 241–254 (2014).
[Crossref]

Z. W. Wang and T. Ren, “Investigation of airflow and respirable dust flow behaviour above an underground bin,” Powder Technol. 250, 103–114 (2013).
[Crossref]

Sadashiv, M. A.

K. J. Candra, S. A. Pulung, and M. A. Sadashiv, “Dust dispersion and management in underground mining faces,” Int. J. Min. Sci. Tech. 24, 39–44 (2014).
[Crossref]

Shi, G. Q.

Shuai, Y.

F. Q. Wang, J. Y. Tan, Y. Shuai, H. P. Tan, and S. X. Chu, “Thermal performance analyses of porous media solar receiver with different irradiative transfer models,” Int. J. Heat Mass Tran. 78, 7–16 (2014).
[Crossref]

Y. Yuan, Y. Shuai, X. W. Li, B. Liu, and H. P. Tan, “Using a new aerosol relative optical thickness concept to identify aerosol particle species,” Atmos. Res. 150, 1–11 (2014).
[Crossref]

Y. Yuan, H. L. Yi, Y. Shuai, B. Liu, and H. P. Tan, “Inverse problem for aerosol particle size distribution using SPSO associated with multi-lognormal distribution model,” Atmos. Environ. 45, 4892–4897 (2011).
[Crossref]

Su, S.

S. Su, H. W. Chen, P. Teakle, and S. Xue, “Characteristics of coal mine ventilation air flows,” J. Environ. Manage. 86, 44–62 (2008).
[Crossref]

Sun, Y. S.

Y. S. Sun, J. Ma, and B. W. Li, “Spectral collocation method for convective-radiative transfer of a moving rod with variable thermal conductivity,” Int. J. Therm. Sci. 90, 187–196 (2015).
[Crossref]

Tan, H. P.

Y. Yuan, Y. Shuai, X. W. Li, B. Liu, and H. P. Tan, “Using a new aerosol relative optical thickness concept to identify aerosol particle species,” Atmos. Res. 150, 1–11 (2014).
[Crossref]

F. Q. Wang, J. Y. Tan, Y. Shuai, H. P. Tan, and S. X. Chu, “Thermal performance analyses of porous media solar receiver with different irradiative transfer models,” Int. J. Heat Mass Tran. 78, 7–16 (2014).
[Crossref]

X. Ben, H. L. Yi, and H. P. Tan, “Polarized radiative transfer in an arbitrary multilayer semitransparent medium,” Appl. Opt. 53, 1427–1441 (2014).
[Crossref]

Y. Yuan, H. L. Yi, Y. Shuai, B. Liu, and H. P. Tan, “Inverse problem for aerosol particle size distribution using SPSO associated with multi-lognormal distribution model,” Atmos. Environ. 45, 4892–4897 (2011).
[Crossref]

H. P. Tan, L. H. Liu, H. L. Yi, J. M. Zhao, H. Qi, and J. Y. Tan, “Recent progress in computational thermal radiative transfer,” Chin. Sci. Bull. 54, 4135–4147 (2009).
[Crossref]

Tan, J. Y.

L. X. Ma, F. Q. Wang, C. G. Wang, C. C. Wang, and J. Y. Tan, “Monte Carlo simulation of spectral reflectance and BRDF of the bubble layer in the upper ocean,” Opt. Express 23, 24274–24289 (2015).
[Crossref]

F. Q. Wang, J. Y. Tan, Y. Shuai, H. P. Tan, and S. X. Chu, “Thermal performance analyses of porous media solar receiver with different irradiative transfer models,” Int. J. Heat Mass Tran. 78, 7–16 (2014).
[Crossref]

H. P. Tan, L. H. Liu, H. L. Yi, J. M. Zhao, H. Qi, and J. Y. Tan, “Recent progress in computational thermal radiative transfer,” Chin. Sci. Bull. 54, 4135–4147 (2009).
[Crossref]

Teakle, P.

S. Su, H. W. Chen, P. Teakle, and S. Xue, “Characteristics of coal mine ventilation air flows,” J. Environ. Manage. 86, 44–62 (2008).
[Crossref]

Tien, C. L.

C. L. Tien, Thermal Radiation Properties of Gases (Academic, 1968).

Toraño, J.

J. Toraño, S. Torno, M. Menéndez, and M. Gent, “Auxiliary ventilation in mining roadways driven with roadheaders: Validated CFD modelling of dust behavior,” Tunn. Undergr. Sp. Tech. 26, 201–210 (2011).
[Crossref]

Torno, S.

J. Toraño, S. Torno, M. Menéndez, and M. Gent, “Auxiliary ventilation in mining roadways driven with roadheaders: Validated CFD modelling of dust behavior,” Tunn. Undergr. Sp. Tech. 26, 201–210 (2011).
[Crossref]

Vallyathan, V.

V. Castranova and V. Vallyathan, “Silicosis and coal workers’ pneumoconiosis,” Environ. Health Persp. 108, 675–684 (2000).
[Crossref]

Wang, C. C.

Wang, C. G.

Wang, D. M.

W. Z. Wang, Y. M. Wang, G. Q. Shi, and D. M. Wang, “Numerical study on infrared optical property of diffuse coal particles in mine fully mechanized working combined with CFD method,” Math. Probl. Eng. 2015, 501401 (2015).

Wang, F. Q.

L. X. Ma, F. Q. Wang, C. G. Wang, C. C. Wang, and J. Y. Tan, “Monte Carlo simulation of spectral reflectance and BRDF of the bubble layer in the upper ocean,” Opt. Express 23, 24274–24289 (2015).
[Crossref]

F. Q. Wang, J. Y. Tan, Y. Shuai, H. P. Tan, and S. X. Chu, “Thermal performance analyses of porous media solar receiver with different irradiative transfer models,” Int. J. Heat Mass Tran. 78, 7–16 (2014).
[Crossref]

Wang, J. L.

J. L. Wang, L. Y. Feng, S. Davidsson, and M. Höök, “Chinese coal supply and future production outlooks,” Energy 60, 204–214 (2013).
[Crossref]

Wang, J. Z.

J. Z. Wang, Y. Dong, J. Wu, R. Mu, and H. Jiang, “Coal production forecast and low carbon policies in China,” Energy Policy 39, 5970–5979 (2011).
[Crossref]

Wang, W. Z.

Wang, Y. J.

Wang, Y. M.

Wang, Z. W.

T. Ren, Z. W. Wang, and G. Cooper, “CFD modelling of ventilation and dust flow behaviour above an underground bin and the design of an innovative dust mitigation system,” Tunn. Undergr. Sp. Tech. 41, 241–254 (2014).
[Crossref]

Z. W. Wang and T. Ren, “Investigation of airflow and respirable dust flow behaviour above an underground bin,” Powder Technol. 250, 103–114 (2013).
[Crossref]

Wei, H. L.

Williams, P. L.

A. H. Lehocky and P. L. Williams, “Comparison of respirable samplers to direct-reading real-time aerosol monitors for measuring coal dust,” Am. Ind. Hyg. Assoc. J. 57, 1013–1018 (1996).
[Crossref]

Wu, J.

J. Z. Wang, Y. Dong, J. Wu, R. Mu, and H. Jiang, “Coal production forecast and low carbon policies in China,” Energy Policy 39, 5970–5979 (2011).
[Crossref]

Xue, S.

S. Su, H. W. Chen, P. Teakle, and S. Xue, “Characteristics of coal mine ventilation air flows,” J. Environ. Manage. 86, 44–62 (2008).
[Crossref]

Yang, P.

Yi, H. L.

X. Ben, H. L. Yi, and H. P. Tan, “Polarized radiative transfer in an arbitrary multilayer semitransparent medium,” Appl. Opt. 53, 1427–1441 (2014).
[Crossref]

Y. Yuan, H. L. Yi, Y. Shuai, B. Liu, and H. P. Tan, “Inverse problem for aerosol particle size distribution using SPSO associated with multi-lognormal distribution model,” Atmos. Environ. 45, 4892–4897 (2011).
[Crossref]

H. P. Tan, L. H. Liu, H. L. Yi, J. M. Zhao, H. Qi, and J. Y. Tan, “Recent progress in computational thermal radiative transfer,” Chin. Sci. Bull. 54, 4135–4147 (2009).
[Crossref]

Yuan, Y.

Y. Yuan, Y. Shuai, X. W. Li, B. Liu, and H. P. Tan, “Using a new aerosol relative optical thickness concept to identify aerosol particle species,” Atmos. Res. 150, 1–11 (2014).
[Crossref]

Y. Yuan, H. L. Yi, Y. Shuai, B. Liu, and H. P. Tan, “Inverse problem for aerosol particle size distribution using SPSO associated with multi-lognormal distribution model,” Atmos. Environ. 45, 4892–4897 (2011).
[Crossref]

Zhao, J. M.

H. P. Tan, L. H. Liu, H. L. Yi, J. M. Zhao, H. Qi, and J. Y. Tan, “Recent progress in computational thermal radiative transfer,” Chin. Sci. Bull. 54, 4135–4147 (2009).
[Crossref]

Am. Ind. Hyg. Assoc. J. (2)

P. Lilienfeld and J. Dulchinos, “Portable Instantaneous Mass Monitor for Coal Mine Dust,” Am. Ind. Hyg. Assoc. J. 33, 136–145 (1972).
[Crossref]

A. H. Lehocky and P. L. Williams, “Comparison of respirable samplers to direct-reading real-time aerosol monitors for measuring coal dust,” Am. Ind. Hyg. Assoc. J. 57, 1013–1018 (1996).
[Crossref]

Ann. Occup. Hyg. (1)

S. D. Mamuya, M. Bratveit, J. Mwaiselage, Y. S. Mashalla, and B. Moen, “High exposure to respirable dust and quartz in a labour-intensive coal mine in Tanzania,” Ann. Occup. Hyg. 50, 197–204 (2005).
[Crossref]

Appl. Opt. (2)

Atmos. Environ. (2)

Y. Yuan, H. L. Yi, Y. Shuai, B. Liu, and H. P. Tan, “Inverse problem for aerosol particle size distribution using SPSO associated with multi-lognormal distribution model,” Atmos. Environ. 45, 4892–4897 (2011).
[Crossref]

R. Koelemeijer, C. Homan, and J. Matthijsen, “Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe,” Atmos. Environ. 40, 5304–5315 (2006).
[Crossref]

Atmos. Res. (1)

Y. Yuan, Y. Shuai, X. W. Li, B. Liu, and H. P. Tan, “Using a new aerosol relative optical thickness concept to identify aerosol particle species,” Atmos. Res. 150, 1–11 (2014).
[Crossref]

Chin. Sci. Bull. (1)

H. P. Tan, L. H. Liu, H. L. Yi, J. M. Zhao, H. Qi, and J. Y. Tan, “Recent progress in computational thermal radiative transfer,” Chin. Sci. Bull. 54, 4135–4147 (2009).
[Crossref]

Energy (1)

J. L. Wang, L. Y. Feng, S. Davidsson, and M. Höök, “Chinese coal supply and future production outlooks,” Energy 60, 204–214 (2013).
[Crossref]

Energy Policy (2)

B. Q. Lin and J. H. Liu, “Estimating coal production peak and trends of coal imports in China,” Energy Policy 38, 512–519 (2010).
[Crossref]

J. Z. Wang, Y. Dong, J. Wu, R. Mu, and H. Jiang, “Coal production forecast and low carbon policies in China,” Energy Policy 39, 5970–5979 (2011).
[Crossref]

Environ. Health Persp. (1)

V. Castranova and V. Vallyathan, “Silicosis and coal workers’ pneumoconiosis,” Environ. Health Persp. 108, 675–684 (2000).
[Crossref]

Industrial Health (1)

M. Onder and S. Onder, “Evaluation of occupational exposures to respirable dust in underground coal mines,” Industrial Health 47, 43–49 (2009).
[Crossref]

Int. J. Heat Mass Tran. (2)

F. Q. Wang, J. Y. Tan, Y. Shuai, H. P. Tan, and S. X. Chu, “Thermal performance analyses of porous media solar receiver with different irradiative transfer models,” Int. J. Heat Mass Tran. 78, 7–16 (2014).
[Crossref]

J. Ma, B. W. Li, and J. R. Howell, “Thermal radiation heat transfer in one- and two-dimensional enclosures using the spectral collocation method with full spectrum k-distribution model,” Int. J. Heat Mass Tran. 71, 35–43 (2014).
[Crossref]

Int. J. Min. Sci. Tech. (1)

K. J. Candra, S. A. Pulung, and M. A. Sadashiv, “Dust dispersion and management in underground mining faces,” Int. J. Min. Sci. Tech. 24, 39–44 (2014).
[Crossref]

Int. J. Therm. Sci. (1)

Y. S. Sun, J. Ma, and B. W. Li, “Spectral collocation method for convective-radiative transfer of a moving rod with variable thermal conductivity,” Int. J. Therm. Sci. 90, 187–196 (2015).
[Crossref]

J. Environ. Manage. (1)

S. Su, H. W. Chen, P. Teakle, and S. Xue, “Characteristics of coal mine ventilation air flows,” J. Environ. Manage. 86, 44–62 (2008).
[Crossref]

J. Thermophys. Heat Tr. (1)

Z. X. Guo and S. Kumar, “Three-dimensional discrete ordinates method in transient radiative transfer,” J. Thermophys. Heat Tr. 16, 289–296 (2002).
[Crossref]

Math. Probl. Eng. (1)

W. Z. Wang, Y. M. Wang, G. Q. Shi, and D. M. Wang, “Numerical study on infrared optical property of diffuse coal particles in mine fully mechanized working combined with CFD method,” Math. Probl. Eng. 2015, 501401 (2015).

Miner. Eng. (1)

E. Petavratzi, S. Kingman, and I. Lowndes, “Particulates from mining operations: A review of sources, effects and regulations,” Miner. Eng. 18, 1183–1199 (2005).
[Crossref]

Opt. Express (3)

Powder Technol. (1)

Z. W. Wang and T. Ren, “Investigation of airflow and respirable dust flow behaviour above an underground bin,” Powder Technol. 250, 103–114 (2013).
[Crossref]

Tunn. Undergr. Sp. Tech. (2)

T. Ren, Z. W. Wang, and G. Cooper, “CFD modelling of ventilation and dust flow behaviour above an underground bin and the design of an innovative dust mitigation system,” Tunn. Undergr. Sp. Tech. 41, 241–254 (2014).
[Crossref]

J. Toraño, S. Torno, M. Menéndez, and M. Gent, “Auxiliary ventilation in mining roadways driven with roadheaders: Validated CFD modelling of dust behavior,” Tunn. Undergr. Sp. Tech. 26, 201–210 (2011).
[Crossref]

Other (2)

C. L. Tien, Thermal Radiation Properties of Gases (Academic, 1968).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. Schematic of underground tunneling face: (a) side view, (b) front view, (c) top view.
Fig. 2.
Fig. 2. 3D cloud chart of the spatial distribution of rock dust: (a) XZ face, (b) YZ face, (c) XY face.
Fig. 3.
Fig. 3. Distribution of rock dust concentration and respirable dust proportion along the tunneling face.
Fig. 4.
Fig. 4. Complex refractive index of rock dust.
Fig. 5.
Fig. 5. Schematic of the calculation process.
Fig. 6.
Fig. 6. Transmittance of dust-polluted mine atmosphere.
Fig. 7.
Fig. 7. Absorption spectrum of mine gases.
Fig. 8.
Fig. 8. Directly simulated and retrieved transmittance of rock dust.
Fig. 9.
Fig. 9. Detection line comparison in vertical direction: (a) line 1, line 4, and line 5; (b) line 2, line 3, and line 6.
Fig. 10.
Fig. 10. Detection line comparison in horizontal direction: (a) line 1 and line 2; (b) line 5 and line 6.
Fig. 11.
Fig. 11. Influence of dust diameter on transmittance.
Fig. 12.
Fig. 12. Correlation of dust concentration and attenuation rate.
Fig. 13.
Fig. 13. Variation of attenuation coefficient and dust distribution.
Fig. 14.
Fig. 14. Variation of dust diameter on attenuation coefficient.
Fig. 15.
Fig. 15. Flow chart of dual-band detection method.

Tables (2)

Tables Icon

Table 1. Quantification of the γ ratio within 1505 1525    cm 1

Tables Icon

Table 2. Quantitative Analysis of the Relative Errors Between Comparison Group and Baselines

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τ r υ = τ m υ exp ( 0 100 κ υ d x ) ,
γ ratio = γ s γ m γ m ,
ε ¯ = v 1 v 2 ( 1 τ v ) E b v d v v 1 v 2 E b v d v ,
β ¯ = v 1 v 2 β v E b v d v v 1 v 2 E b v d v .

Metrics