Abstract

Band overlap and random noise are a serious problem in infrared spectra, especially for aging spectrometers. In this paper, we have presented a simple method for spectrum restoration. The proposed method is based on local operations, and involves sparse decompositions of each spectrum piece under an evolving overcomplete dictionary, and a simple averaging calculation. The content of the dictionary is of prime importance for the deconvolution process. Quantitative assessments of this technique on simulated and real spectra show significant improvements over the state-of-the-art methods. The proposed method can almost eliminate the effects of instrument aging. The features of these deconvoluted infrared spectra are more easily extracted, aiding the interpretation of unknown chemical mixtures.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonlocal low-rank-based blind deconvolution of Raman spectroscopy for automatic target recognition

Tingting Liu, Hai Liu, Zhaoli Zhang, and Sanya Liu
Appl. Opt. 57(22) 6461-6469 (2018)

Image fusion via nonlocal sparse K-SVD dictionary learning

Ying Li, Fangyi Li, Bendu Bai, and Qiang Shen
Appl. Opt. 55(7) 1814-1823 (2016)

Richardson–Lucy blind deconvolution of spectroscopic data with wavelet regularization

Hai Liu, Zhaoli Zhang, Sanya Liu, Tingting Liu, Luxin Yan, and Tianxu Zhang
Appl. Opt. 54(7) 1770-1775 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription