Abstract

Yarn density measurement is a significant part of yarn-dyed fabric analysis, traditionally based on reflective image analysis. In this paper, utilizing fabric light transmittance, a method for two-dimensional discrete Fourier transform (2D DFT) analysis on the transmission fabric image is developed for fabric density inspection. First, the power spectrum is generated from the fabric image by a 2D DFT. Next, the yarn skew angles are detected based on the power spectrum analysis. Then the fabric image is reconstructed by an inverse 2D DFT. Finally, projection curves are generated from the reconstructed images and the number of yarns is counted according to the peaks and valleys to obtain the fabric density. Through a comparison between analysis on the reflective and transmission images of multiple-color fabrics, it is proved that the latter method can segment the yarns with more satisfactory accuracy. Furthermore, the experimental and theoretical analyses demonstrate that the proposed method is effective for the density inspection of yarn-dyed fabrics with good robustness and great accuracy.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Referenceless segmentation of flaws in woven fabrics

Miquel Ralló, María S. Millán, and Jaume Escofet
Appl. Opt. 46(27) 6688-6699 (2007)

Modeling of woven fabric structures based on Fourier image analysis

Jaume Escofet, María S. Millán, and Miquel Ralló
Appl. Opt. 40(34) 6170-6176 (2001)

Unsupervised defect detection in textiles based on Fourier analysis and wavelet shrinkage

Guang-Hua Hu, Qing-Hui Wang, and Guo-Hui Zhang
Appl. Opt. 54(10) 2963-2980 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription