Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Combining semiconductor quantum dots and bioscaffolds into nanoscale energy transfer devices

Not Accessible

Your library or personal account may give you access

Abstract

Significant advances have been made in the development of nanoscale devices capable of exciton transport via Förster resonance energy transfer. Several requirements must be met for effective operation, including a reliable energy-harvesting source along with highly organized, precisely placed energy relay elements. For the latter, biological scaffolds such as DNA provide a customizable, symmetric, and stable structure that can be site-specifically modified with organic fluorophores. Here, advancements in nanoscale energy transfer devices incorporating semiconductor nanocrystals and bioscaffolds are reviewed with discussion of biofunctionalization, linker chemistries, design considerations, and concluding with applications in light harvesting, multiplexed biosensing, and optical logic.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
DNA origami enabled assembly of nanophotonic structures and their applications [Invited]

Zhi Zhao, Yutao Han, and Yan Liu
Opt. Mater. Express 12(1) 284-307 (2022)

Energy transfer in colloidal CdTe quantum dot nanoclusters

Clare Higgins, Manuela Lunz, A. Louise Bradley, Valerie A. Gerard, Stephen Byrne, Yurii K. Gun’ko, Vladimir Lesnyak, and Nikolai Gaponik
Opt. Express 18(24) 24486-24494 (2010)

Optics research at the U.S. Naval Research Laboratory

Craig Hoffman, T. G. Giallorenzi, and Leo B. Slater
Appl. Opt. 54(31) F268-F285 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved