Abstract

We characterize the internal efficiency, internal loss, and optical gain versus current density in 7-stage interband cascade lasers operating at λ=3.1 and 3.45 μm using a cavity-length study of the external differential quantum efficiency (EDQE) and threshold current density at temperatures between 300 and 345 K. We find that the pronounced efficiency droop of the EDQE at high current densities is primarily due to an increase in the internal loss rather than a reduction in the internal efficiency. On the other hand, if the current density J is fixed, the temperature variation of the EDQE at that J is due primarily to a decrease of the internal efficiency. The gain versus current density is fit well by a logarithmic relationship, although the magnitude of the experimental gain is >20% below the theoretical estimate.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7-5.6 μm

William W. Bewley, Chadwick L. Canedy, Chul Soo Kim, Mijin Kim, Charles D. Merritt, Joshua Abell, Igor Vurgaftman, and Jerry R. Meyer
Opt. Express 20(3) 3235-3240 (2012)

High-power room-temperature continuous-wave mid-infrared interband cascade lasers

William W. Bewley, Chadwick L. Canedy, Chul Soo Kim, Mijin Kim, Charles D. Merritt, Joshua Abell, Igor Vurgaftman, and Jerry R. Meyer
Opt. Express 20(19) 20894-20901 (2012)

High-power continuous-wave interband cascade lasers with 10 active stages

Mijin Kim, William W. Bewley, Chadwick L. Canedy, Chul Soo Kim, Charles D. Merritt, Joshua Abell, Igor Vurgaftman, and Jerry R. Meyer
Opt. Express 23(8) 9664-9672 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. Q. Yang, “Infrared laser based on intersubband transitions in quantum wells,” Superlattices Microstruct. 17, 77–83 (1995).
  2. J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and type-I interband cascade lasers,” Electron. Lett. 32, 45–46 (1996).
    [Crossref]
  3. I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
    [Crossref]
  4. R. P. Leavitt, J. D. Bruno, J. L. Bradshaw, K. M. Lascola, J. T. Pham, F. J. Towner, S. Suchalkin, G. Belenky, I. Vurgaftman, C. L. Canedy, W. W. Bewley, C. S. Kim, M. Kim, C. D. Merritt, and J. R. Meyer, “High-performance interband cascade lasers at 3.8  μm,” Proc. SPIE 8277, 82771E (2012).
  5. R. Weih, A. Bauer, M. Kamp, and S. Höfling, “Interband cascade lasers with AlGaAsSb bulk cladding layers,” Opt. Mater. Express 3, 1624–1631 (2013).
  6. M. von Edlinger, J. Scheuermann, R. Weih, C. Zimmermann, L. Nähle, M. Fischer, J. Koeth, S. Höfling, and M. Kamp, “Monomode interband cascade lasers at 5.2  mm for nitric oxide sensing,” IEEE Photon. Technol. Lett. 26, 480–482 (2014).
    [Crossref]
  7. I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19, 1200210 (2013).
  8. W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7−5.6  μm,” Opt. Express 20, 3235–3240 (2012).
    [Crossref]
  9. C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80°C,” Appl. Phys. Lett. 101, 061104 (2012).
    [Crossref]
  10. C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, I. Vurgaftman, J. R. Meyer, and M. Kim, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22, 7702–7710 (2014).
    [Crossref]
  11. I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015).
  12. B. A. Ikyo, I. P. Marko, A. R. Adams, S. J. Sweeney, C. L. Canedy, I. Vurgaftman, C. S. Kim, M. Kim, W. W. Bewley, and J. R. Meyer, “Temperature dependence of 4.1  μm mid-infrared type-II “W” interband cascade lasers,” Appl. Phys. Lett. 99, 021102 (2011).
    [Crossref]
  13. M. Y. Vinnichenko, L. E. Vorobjev, D. A. Firsov, M. O. Mashko, R. M. Balagula, G. Belenky, L. Shterengas, and G. Kipshidze, “Dependence of the carrier concentration on the current in mid-infrared injection lasers with quantum wells,” Semiconductors 47, 1513–1516 (2013).
  14. M. von Edlinger, J. Scheuermann, L. Nähle, C. Zimmermann, L. Hildebrandt, M. Fischer, J. Koeth, R. Weih, S. Höfling, and M. Kamp, “DFB interband cascade lasers for tunable laser absorption spectroscopy from 3 to 6  μm,” Proc. SPIE 8993, 899318 (2014).
  15. W. W. Bewley, J. R. Lindle, C. L. Canedy, M. Kim, C. S. Kim, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Gain, loss, and internal efficiency in interband cascade lasers emitting at λ = 3.6−4.1  μm,” J. Appl. Phys. 103, 013114 (2008).
    [Crossref]
  16. C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B 26, 1160–1162 (2008).
    [Crossref]
  17. J. Buus, “Analytical approximation for the reflectivity of DH lasers,” IEEE J. Quantum Electron. 17, 2257–2258 (1981).
  18. P. C. Kendall, D. A. Roberts, P. N. Robson, M. J. Adams, and M. J. Robertson, “New formula for semiconductor-laser facet reflectivity,” IEEE Photon. Technol. Lett. 5, 148–150 (1993).
    [Crossref]
  19. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  20. A. Chandola, R. Pino, and P. S. Dutta, “Below bandgap optical absorption in tellurium-doped GaSb,” Semicond. Sci. Technol. 20, 886–893 (2005).
    [Crossref]

2015 (1)

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015).

2014 (3)

C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, I. Vurgaftman, J. R. Meyer, and M. Kim, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22, 7702–7710 (2014).
[Crossref]

M. von Edlinger, J. Scheuermann, L. Nähle, C. Zimmermann, L. Hildebrandt, M. Fischer, J. Koeth, R. Weih, S. Höfling, and M. Kamp, “DFB interband cascade lasers for tunable laser absorption spectroscopy from 3 to 6  μm,” Proc. SPIE 8993, 899318 (2014).

M. von Edlinger, J. Scheuermann, R. Weih, C. Zimmermann, L. Nähle, M. Fischer, J. Koeth, S. Höfling, and M. Kamp, “Monomode interband cascade lasers at 5.2  mm for nitric oxide sensing,” IEEE Photon. Technol. Lett. 26, 480–482 (2014).
[Crossref]

2013 (3)

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19, 1200210 (2013).

R. Weih, A. Bauer, M. Kamp, and S. Höfling, “Interband cascade lasers with AlGaAsSb bulk cladding layers,” Opt. Mater. Express 3, 1624–1631 (2013).

M. Y. Vinnichenko, L. E. Vorobjev, D. A. Firsov, M. O. Mashko, R. M. Balagula, G. Belenky, L. Shterengas, and G. Kipshidze, “Dependence of the carrier concentration on the current in mid-infrared injection lasers with quantum wells,” Semiconductors 47, 1513–1516 (2013).

2012 (3)

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7−5.6  μm,” Opt. Express 20, 3235–3240 (2012).
[Crossref]

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80°C,” Appl. Phys. Lett. 101, 061104 (2012).
[Crossref]

R. P. Leavitt, J. D. Bruno, J. L. Bradshaw, K. M. Lascola, J. T. Pham, F. J. Towner, S. Suchalkin, G. Belenky, I. Vurgaftman, C. L. Canedy, W. W. Bewley, C. S. Kim, M. Kim, C. D. Merritt, and J. R. Meyer, “High-performance interband cascade lasers at 3.8  μm,” Proc. SPIE 8277, 82771E (2012).

2011 (2)

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref]

B. A. Ikyo, I. P. Marko, A. R. Adams, S. J. Sweeney, C. L. Canedy, I. Vurgaftman, C. S. Kim, M. Kim, W. W. Bewley, and J. R. Meyer, “Temperature dependence of 4.1  μm mid-infrared type-II “W” interband cascade lasers,” Appl. Phys. Lett. 99, 021102 (2011).
[Crossref]

2008 (2)

W. W. Bewley, J. R. Lindle, C. L. Canedy, M. Kim, C. S. Kim, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Gain, loss, and internal efficiency in interband cascade lasers emitting at λ = 3.6−4.1  μm,” J. Appl. Phys. 103, 013114 (2008).
[Crossref]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B 26, 1160–1162 (2008).
[Crossref]

2005 (1)

A. Chandola, R. Pino, and P. S. Dutta, “Below bandgap optical absorption in tellurium-doped GaSb,” Semicond. Sci. Technol. 20, 886–893 (2005).
[Crossref]

1996 (1)

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and type-I interband cascade lasers,” Electron. Lett. 32, 45–46 (1996).
[Crossref]

1995 (1)

R. Q. Yang, “Infrared laser based on intersubband transitions in quantum wells,” Superlattices Microstruct. 17, 77–83 (1995).

1993 (1)

P. C. Kendall, D. A. Roberts, P. N. Robson, M. J. Adams, and M. J. Robertson, “New formula for semiconductor-laser facet reflectivity,” IEEE Photon. Technol. Lett. 5, 148–150 (1993).
[Crossref]

1981 (1)

J. Buus, “Analytical approximation for the reflectivity of DH lasers,” IEEE J. Quantum Electron. 17, 2257–2258 (1981).

Abell, J.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015).

C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, I. Vurgaftman, J. R. Meyer, and M. Kim, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22, 7702–7710 (2014).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19, 1200210 (2013).

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80°C,” Appl. Phys. Lett. 101, 061104 (2012).
[Crossref]

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7−5.6  μm,” Opt. Express 20, 3235–3240 (2012).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref]

Adams, A. R.

B. A. Ikyo, I. P. Marko, A. R. Adams, S. J. Sweeney, C. L. Canedy, I. Vurgaftman, C. S. Kim, M. Kim, W. W. Bewley, and J. R. Meyer, “Temperature dependence of 4.1  μm mid-infrared type-II “W” interband cascade lasers,” Appl. Phys. Lett. 99, 021102 (2011).
[Crossref]

Adams, M. J.

P. C. Kendall, D. A. Roberts, P. N. Robson, M. J. Adams, and M. J. Robertson, “New formula for semiconductor-laser facet reflectivity,” IEEE Photon. Technol. Lett. 5, 148–150 (1993).
[Crossref]

Balagula, R. M.

M. Y. Vinnichenko, L. E. Vorobjev, D. A. Firsov, M. O. Mashko, R. M. Balagula, G. Belenky, L. Shterengas, and G. Kipshidze, “Dependence of the carrier concentration on the current in mid-infrared injection lasers with quantum wells,” Semiconductors 47, 1513–1516 (2013).

Bauer, A.

Belenky, G.

M. Y. Vinnichenko, L. E. Vorobjev, D. A. Firsov, M. O. Mashko, R. M. Balagula, G. Belenky, L. Shterengas, and G. Kipshidze, “Dependence of the carrier concentration on the current in mid-infrared injection lasers with quantum wells,” Semiconductors 47, 1513–1516 (2013).

R. P. Leavitt, J. D. Bruno, J. L. Bradshaw, K. M. Lascola, J. T. Pham, F. J. Towner, S. Suchalkin, G. Belenky, I. Vurgaftman, C. L. Canedy, W. W. Bewley, C. S. Kim, M. Kim, C. D. Merritt, and J. R. Meyer, “High-performance interband cascade lasers at 3.8  μm,” Proc. SPIE 8277, 82771E (2012).

Bewley, W. W.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015).

C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, I. Vurgaftman, J. R. Meyer, and M. Kim, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22, 7702–7710 (2014).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19, 1200210 (2013).

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80°C,” Appl. Phys. Lett. 101, 061104 (2012).
[Crossref]

R. P. Leavitt, J. D. Bruno, J. L. Bradshaw, K. M. Lascola, J. T. Pham, F. J. Towner, S. Suchalkin, G. Belenky, I. Vurgaftman, C. L. Canedy, W. W. Bewley, C. S. Kim, M. Kim, C. D. Merritt, and J. R. Meyer, “High-performance interband cascade lasers at 3.8  μm,” Proc. SPIE 8277, 82771E (2012).

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7−5.6  μm,” Opt. Express 20, 3235–3240 (2012).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref]

B. A. Ikyo, I. P. Marko, A. R. Adams, S. J. Sweeney, C. L. Canedy, I. Vurgaftman, C. S. Kim, M. Kim, W. W. Bewley, and J. R. Meyer, “Temperature dependence of 4.1  μm mid-infrared type-II “W” interband cascade lasers,” Appl. Phys. Lett. 99, 021102 (2011).
[Crossref]

W. W. Bewley, J. R. Lindle, C. L. Canedy, M. Kim, C. S. Kim, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Gain, loss, and internal efficiency in interband cascade lasers emitting at λ = 3.6−4.1  μm,” J. Appl. Phys. 103, 013114 (2008).
[Crossref]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B 26, 1160–1162 (2008).
[Crossref]

Bradshaw, J. L.

R. P. Leavitt, J. D. Bruno, J. L. Bradshaw, K. M. Lascola, J. T. Pham, F. J. Towner, S. Suchalkin, G. Belenky, I. Vurgaftman, C. L. Canedy, W. W. Bewley, C. S. Kim, M. Kim, C. D. Merritt, and J. R. Meyer, “High-performance interband cascade lasers at 3.8  μm,” Proc. SPIE 8277, 82771E (2012).

Bruno, J. D.

R. P. Leavitt, J. D. Bruno, J. L. Bradshaw, K. M. Lascola, J. T. Pham, F. J. Towner, S. Suchalkin, G. Belenky, I. Vurgaftman, C. L. Canedy, W. W. Bewley, C. S. Kim, M. Kim, C. D. Merritt, and J. R. Meyer, “High-performance interband cascade lasers at 3.8  μm,” Proc. SPIE 8277, 82771E (2012).

Buus, J.

J. Buus, “Analytical approximation for the reflectivity of DH lasers,” IEEE J. Quantum Electron. 17, 2257–2258 (1981).

Canedy, C. L.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015).

C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, I. Vurgaftman, J. R. Meyer, and M. Kim, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22, 7702–7710 (2014).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19, 1200210 (2013).

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80°C,” Appl. Phys. Lett. 101, 061104 (2012).
[Crossref]

R. P. Leavitt, J. D. Bruno, J. L. Bradshaw, K. M. Lascola, J. T. Pham, F. J. Towner, S. Suchalkin, G. Belenky, I. Vurgaftman, C. L. Canedy, W. W. Bewley, C. S. Kim, M. Kim, C. D. Merritt, and J. R. Meyer, “High-performance interband cascade lasers at 3.8  μm,” Proc. SPIE 8277, 82771E (2012).

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7−5.6  μm,” Opt. Express 20, 3235–3240 (2012).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref]

B. A. Ikyo, I. P. Marko, A. R. Adams, S. J. Sweeney, C. L. Canedy, I. Vurgaftman, C. S. Kim, M. Kim, W. W. Bewley, and J. R. Meyer, “Temperature dependence of 4.1  μm mid-infrared type-II “W” interband cascade lasers,” Appl. Phys. Lett. 99, 021102 (2011).
[Crossref]

W. W. Bewley, J. R. Lindle, C. L. Canedy, M. Kim, C. S. Kim, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Gain, loss, and internal efficiency in interband cascade lasers emitting at λ = 3.6−4.1  μm,” J. Appl. Phys. 103, 013114 (2008).
[Crossref]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B 26, 1160–1162 (2008).
[Crossref]

Chandola, A.

A. Chandola, R. Pino, and P. S. Dutta, “Below bandgap optical absorption in tellurium-doped GaSb,” Semicond. Sci. Technol. 20, 886–893 (2005).
[Crossref]

Coldren, L. A.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Corzine, S. W.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Dutta, P. S.

A. Chandola, R. Pino, and P. S. Dutta, “Below bandgap optical absorption in tellurium-doped GaSb,” Semicond. Sci. Technol. 20, 886–893 (2005).
[Crossref]

Firsov, D. A.

M. Y. Vinnichenko, L. E. Vorobjev, D. A. Firsov, M. O. Mashko, R. M. Balagula, G. Belenky, L. Shterengas, and G. Kipshidze, “Dependence of the carrier concentration on the current in mid-infrared injection lasers with quantum wells,” Semiconductors 47, 1513–1516 (2013).

Fischer, M.

M. von Edlinger, J. Scheuermann, L. Nähle, C. Zimmermann, L. Hildebrandt, M. Fischer, J. Koeth, R. Weih, S. Höfling, and M. Kamp, “DFB interband cascade lasers for tunable laser absorption spectroscopy from 3 to 6  μm,” Proc. SPIE 8993, 899318 (2014).

M. von Edlinger, J. Scheuermann, R. Weih, C. Zimmermann, L. Nähle, M. Fischer, J. Koeth, S. Höfling, and M. Kamp, “Monomode interband cascade lasers at 5.2  mm for nitric oxide sensing,” IEEE Photon. Technol. Lett. 26, 480–482 (2014).
[Crossref]

Hildebrandt, L.

M. von Edlinger, J. Scheuermann, L. Nähle, C. Zimmermann, L. Hildebrandt, M. Fischer, J. Koeth, R. Weih, S. Höfling, and M. Kamp, “DFB interband cascade lasers for tunable laser absorption spectroscopy from 3 to 6  μm,” Proc. SPIE 8993, 899318 (2014).

Höfling, S.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015).

M. von Edlinger, J. Scheuermann, R. Weih, C. Zimmermann, L. Nähle, M. Fischer, J. Koeth, S. Höfling, and M. Kamp, “Monomode interband cascade lasers at 5.2  mm for nitric oxide sensing,” IEEE Photon. Technol. Lett. 26, 480–482 (2014).
[Crossref]

M. von Edlinger, J. Scheuermann, L. Nähle, C. Zimmermann, L. Hildebrandt, M. Fischer, J. Koeth, R. Weih, S. Höfling, and M. Kamp, “DFB interband cascade lasers for tunable laser absorption spectroscopy from 3 to 6  μm,” Proc. SPIE 8993, 899318 (2014).

R. Weih, A. Bauer, M. Kamp, and S. Höfling, “Interband cascade lasers with AlGaAsSb bulk cladding layers,” Opt. Mater. Express 3, 1624–1631 (2013).

Ikyo, B. A.

B. A. Ikyo, I. P. Marko, A. R. Adams, S. J. Sweeney, C. L. Canedy, I. Vurgaftman, C. S. Kim, M. Kim, W. W. Bewley, and J. R. Meyer, “Temperature dependence of 4.1  μm mid-infrared type-II “W” interband cascade lasers,” Appl. Phys. Lett. 99, 021102 (2011).
[Crossref]

Kamp, M.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015).

M. von Edlinger, J. Scheuermann, R. Weih, C. Zimmermann, L. Nähle, M. Fischer, J. Koeth, S. Höfling, and M. Kamp, “Monomode interband cascade lasers at 5.2  mm for nitric oxide sensing,” IEEE Photon. Technol. Lett. 26, 480–482 (2014).
[Crossref]

M. von Edlinger, J. Scheuermann, L. Nähle, C. Zimmermann, L. Hildebrandt, M. Fischer, J. Koeth, R. Weih, S. Höfling, and M. Kamp, “DFB interband cascade lasers for tunable laser absorption spectroscopy from 3 to 6  μm,” Proc. SPIE 8993, 899318 (2014).

R. Weih, A. Bauer, M. Kamp, and S. Höfling, “Interband cascade lasers with AlGaAsSb bulk cladding layers,” Opt. Mater. Express 3, 1624–1631 (2013).

Kendall, P. C.

P. C. Kendall, D. A. Roberts, P. N. Robson, M. J. Adams, and M. J. Robertson, “New formula for semiconductor-laser facet reflectivity,” IEEE Photon. Technol. Lett. 5, 148–150 (1993).
[Crossref]

Kim, C. S.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015).

C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, I. Vurgaftman, J. R. Meyer, and M. Kim, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22, 7702–7710 (2014).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19, 1200210 (2013).

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80°C,” Appl. Phys. Lett. 101, 061104 (2012).
[Crossref]

R. P. Leavitt, J. D. Bruno, J. L. Bradshaw, K. M. Lascola, J. T. Pham, F. J. Towner, S. Suchalkin, G. Belenky, I. Vurgaftman, C. L. Canedy, W. W. Bewley, C. S. Kim, M. Kim, C. D. Merritt, and J. R. Meyer, “High-performance interband cascade lasers at 3.8  μm,” Proc. SPIE 8277, 82771E (2012).

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7−5.6  μm,” Opt. Express 20, 3235–3240 (2012).
[Crossref]

B. A. Ikyo, I. P. Marko, A. R. Adams, S. J. Sweeney, C. L. Canedy, I. Vurgaftman, C. S. Kim, M. Kim, W. W. Bewley, and J. R. Meyer, “Temperature dependence of 4.1  μm mid-infrared type-II “W” interband cascade lasers,” Appl. Phys. Lett. 99, 021102 (2011).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref]

W. W. Bewley, J. R. Lindle, C. L. Canedy, M. Kim, C. S. Kim, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Gain, loss, and internal efficiency in interband cascade lasers emitting at λ = 3.6−4.1  μm,” J. Appl. Phys. 103, 013114 (2008).
[Crossref]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B 26, 1160–1162 (2008).
[Crossref]

Kim, M.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015).

C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, I. Vurgaftman, J. R. Meyer, and M. Kim, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22, 7702–7710 (2014).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19, 1200210 (2013).

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80°C,” Appl. Phys. Lett. 101, 061104 (2012).
[Crossref]

R. P. Leavitt, J. D. Bruno, J. L. Bradshaw, K. M. Lascola, J. T. Pham, F. J. Towner, S. Suchalkin, G. Belenky, I. Vurgaftman, C. L. Canedy, W. W. Bewley, C. S. Kim, M. Kim, C. D. Merritt, and J. R. Meyer, “High-performance interband cascade lasers at 3.8  μm,” Proc. SPIE 8277, 82771E (2012).

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7−5.6  μm,” Opt. Express 20, 3235–3240 (2012).
[Crossref]

B. A. Ikyo, I. P. Marko, A. R. Adams, S. J. Sweeney, C. L. Canedy, I. Vurgaftman, C. S. Kim, M. Kim, W. W. Bewley, and J. R. Meyer, “Temperature dependence of 4.1  μm mid-infrared type-II “W” interband cascade lasers,” Appl. Phys. Lett. 99, 021102 (2011).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B 26, 1160–1162 (2008).
[Crossref]

W. W. Bewley, J. R. Lindle, C. L. Canedy, M. Kim, C. S. Kim, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Gain, loss, and internal efficiency in interband cascade lasers emitting at λ = 3.6−4.1  μm,” J. Appl. Phys. 103, 013114 (2008).
[Crossref]

Kipshidze, G.

M. Y. Vinnichenko, L. E. Vorobjev, D. A. Firsov, M. O. Mashko, R. M. Balagula, G. Belenky, L. Shterengas, and G. Kipshidze, “Dependence of the carrier concentration on the current in mid-infrared injection lasers with quantum wells,” Semiconductors 47, 1513–1516 (2013).

Koeth, J.

M. von Edlinger, J. Scheuermann, L. Nähle, C. Zimmermann, L. Hildebrandt, M. Fischer, J. Koeth, R. Weih, S. Höfling, and M. Kamp, “DFB interband cascade lasers for tunable laser absorption spectroscopy from 3 to 6  μm,” Proc. SPIE 8993, 899318 (2014).

M. von Edlinger, J. Scheuermann, R. Weih, C. Zimmermann, L. Nähle, M. Fischer, J. Koeth, S. Höfling, and M. Kamp, “Monomode interband cascade lasers at 5.2  mm for nitric oxide sensing,” IEEE Photon. Technol. Lett. 26, 480–482 (2014).
[Crossref]

Larrabee, D. C.

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B 26, 1160–1162 (2008).
[Crossref]

W. W. Bewley, J. R. Lindle, C. L. Canedy, M. Kim, C. S. Kim, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Gain, loss, and internal efficiency in interband cascade lasers emitting at λ = 3.6−4.1  μm,” J. Appl. Phys. 103, 013114 (2008).
[Crossref]

Lascola, K. M.

R. P. Leavitt, J. D. Bruno, J. L. Bradshaw, K. M. Lascola, J. T. Pham, F. J. Towner, S. Suchalkin, G. Belenky, I. Vurgaftman, C. L. Canedy, W. W. Bewley, C. S. Kim, M. Kim, C. D. Merritt, and J. R. Meyer, “High-performance interband cascade lasers at 3.8  μm,” Proc. SPIE 8277, 82771E (2012).

Leavitt, R. P.

R. P. Leavitt, J. D. Bruno, J. L. Bradshaw, K. M. Lascola, J. T. Pham, F. J. Towner, S. Suchalkin, G. Belenky, I. Vurgaftman, C. L. Canedy, W. W. Bewley, C. S. Kim, M. Kim, C. D. Merritt, and J. R. Meyer, “High-performance interband cascade lasers at 3.8  μm,” Proc. SPIE 8277, 82771E (2012).

Lindle, J. R.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref]

W. W. Bewley, J. R. Lindle, C. L. Canedy, M. Kim, C. S. Kim, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Gain, loss, and internal efficiency in interband cascade lasers emitting at λ = 3.6−4.1  μm,” J. Appl. Phys. 103, 013114 (2008).
[Crossref]

Marko, I. P.

B. A. Ikyo, I. P. Marko, A. R. Adams, S. J. Sweeney, C. L. Canedy, I. Vurgaftman, C. S. Kim, M. Kim, W. W. Bewley, and J. R. Meyer, “Temperature dependence of 4.1  μm mid-infrared type-II “W” interband cascade lasers,” Appl. Phys. Lett. 99, 021102 (2011).
[Crossref]

Mashko, M. O.

M. Y. Vinnichenko, L. E. Vorobjev, D. A. Firsov, M. O. Mashko, R. M. Balagula, G. Belenky, L. Shterengas, and G. Kipshidze, “Dependence of the carrier concentration on the current in mid-infrared injection lasers with quantum wells,” Semiconductors 47, 1513–1516 (2013).

Merritt, C. D.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015).

C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, I. Vurgaftman, J. R. Meyer, and M. Kim, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22, 7702–7710 (2014).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19, 1200210 (2013).

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80°C,” Appl. Phys. Lett. 101, 061104 (2012).
[Crossref]

R. P. Leavitt, J. D. Bruno, J. L. Bradshaw, K. M. Lascola, J. T. Pham, F. J. Towner, S. Suchalkin, G. Belenky, I. Vurgaftman, C. L. Canedy, W. W. Bewley, C. S. Kim, M. Kim, C. D. Merritt, and J. R. Meyer, “High-performance interband cascade lasers at 3.8  μm,” Proc. SPIE 8277, 82771E (2012).

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7−5.6  μm,” Opt. Express 20, 3235–3240 (2012).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref]

Meyer, J. R.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015).

C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, I. Vurgaftman, J. R. Meyer, and M. Kim, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22, 7702–7710 (2014).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19, 1200210 (2013).

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80°C,” Appl. Phys. Lett. 101, 061104 (2012).
[Crossref]

R. P. Leavitt, J. D. Bruno, J. L. Bradshaw, K. M. Lascola, J. T. Pham, F. J. Towner, S. Suchalkin, G. Belenky, I. Vurgaftman, C. L. Canedy, W. W. Bewley, C. S. Kim, M. Kim, C. D. Merritt, and J. R. Meyer, “High-performance interband cascade lasers at 3.8  μm,” Proc. SPIE 8277, 82771E (2012).

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7−5.6  μm,” Opt. Express 20, 3235–3240 (2012).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref]

B. A. Ikyo, I. P. Marko, A. R. Adams, S. J. Sweeney, C. L. Canedy, I. Vurgaftman, C. S. Kim, M. Kim, W. W. Bewley, and J. R. Meyer, “Temperature dependence of 4.1  μm mid-infrared type-II “W” interband cascade lasers,” Appl. Phys. Lett. 99, 021102 (2011).
[Crossref]

W. W. Bewley, J. R. Lindle, C. L. Canedy, M. Kim, C. S. Kim, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Gain, loss, and internal efficiency in interband cascade lasers emitting at λ = 3.6−4.1  μm,” J. Appl. Phys. 103, 013114 (2008).
[Crossref]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B 26, 1160–1162 (2008).
[Crossref]

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and type-I interband cascade lasers,” Electron. Lett. 32, 45–46 (1996).
[Crossref]

Nähle, L.

M. von Edlinger, J. Scheuermann, R. Weih, C. Zimmermann, L. Nähle, M. Fischer, J. Koeth, S. Höfling, and M. Kamp, “Monomode interband cascade lasers at 5.2  mm for nitric oxide sensing,” IEEE Photon. Technol. Lett. 26, 480–482 (2014).
[Crossref]

M. von Edlinger, J. Scheuermann, L. Nähle, C. Zimmermann, L. Hildebrandt, M. Fischer, J. Koeth, R. Weih, S. Höfling, and M. Kamp, “DFB interband cascade lasers for tunable laser absorption spectroscopy from 3 to 6  μm,” Proc. SPIE 8993, 899318 (2014).

Nolde, J. A.

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B 26, 1160–1162 (2008).
[Crossref]

Pham, J. T.

R. P. Leavitt, J. D. Bruno, J. L. Bradshaw, K. M. Lascola, J. T. Pham, F. J. Towner, S. Suchalkin, G. Belenky, I. Vurgaftman, C. L. Canedy, W. W. Bewley, C. S. Kim, M. Kim, C. D. Merritt, and J. R. Meyer, “High-performance interband cascade lasers at 3.8  μm,” Proc. SPIE 8277, 82771E (2012).

Pino, R.

A. Chandola, R. Pino, and P. S. Dutta, “Below bandgap optical absorption in tellurium-doped GaSb,” Semicond. Sci. Technol. 20, 886–893 (2005).
[Crossref]

Ram-Mohan, L. R.

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and type-I interband cascade lasers,” Electron. Lett. 32, 45–46 (1996).
[Crossref]

Roberts, D. A.

P. C. Kendall, D. A. Roberts, P. N. Robson, M. J. Adams, and M. J. Robertson, “New formula for semiconductor-laser facet reflectivity,” IEEE Photon. Technol. Lett. 5, 148–150 (1993).
[Crossref]

Robertson, M. J.

P. C. Kendall, D. A. Roberts, P. N. Robson, M. J. Adams, and M. J. Robertson, “New formula for semiconductor-laser facet reflectivity,” IEEE Photon. Technol. Lett. 5, 148–150 (1993).
[Crossref]

Robson, P. N.

P. C. Kendall, D. A. Roberts, P. N. Robson, M. J. Adams, and M. J. Robertson, “New formula for semiconductor-laser facet reflectivity,” IEEE Photon. Technol. Lett. 5, 148–150 (1993).
[Crossref]

Scheuermann, J.

M. von Edlinger, J. Scheuermann, L. Nähle, C. Zimmermann, L. Hildebrandt, M. Fischer, J. Koeth, R. Weih, S. Höfling, and M. Kamp, “DFB interband cascade lasers for tunable laser absorption spectroscopy from 3 to 6  μm,” Proc. SPIE 8993, 899318 (2014).

M. von Edlinger, J. Scheuermann, R. Weih, C. Zimmermann, L. Nähle, M. Fischer, J. Koeth, S. Höfling, and M. Kamp, “Monomode interband cascade lasers at 5.2  mm for nitric oxide sensing,” IEEE Photon. Technol. Lett. 26, 480–482 (2014).
[Crossref]

Shterengas, L.

M. Y. Vinnichenko, L. E. Vorobjev, D. A. Firsov, M. O. Mashko, R. M. Balagula, G. Belenky, L. Shterengas, and G. Kipshidze, “Dependence of the carrier concentration on the current in mid-infrared injection lasers with quantum wells,” Semiconductors 47, 1513–1516 (2013).

Suchalkin, S.

R. P. Leavitt, J. D. Bruno, J. L. Bradshaw, K. M. Lascola, J. T. Pham, F. J. Towner, S. Suchalkin, G. Belenky, I. Vurgaftman, C. L. Canedy, W. W. Bewley, C. S. Kim, M. Kim, C. D. Merritt, and J. R. Meyer, “High-performance interband cascade lasers at 3.8  μm,” Proc. SPIE 8277, 82771E (2012).

Sweeney, S. J.

B. A. Ikyo, I. P. Marko, A. R. Adams, S. J. Sweeney, C. L. Canedy, I. Vurgaftman, C. S. Kim, M. Kim, W. W. Bewley, and J. R. Meyer, “Temperature dependence of 4.1  μm mid-infrared type-II “W” interband cascade lasers,” Appl. Phys. Lett. 99, 021102 (2011).
[Crossref]

Towner, F. J.

R. P. Leavitt, J. D. Bruno, J. L. Bradshaw, K. M. Lascola, J. T. Pham, F. J. Towner, S. Suchalkin, G. Belenky, I. Vurgaftman, C. L. Canedy, W. W. Bewley, C. S. Kim, M. Kim, C. D. Merritt, and J. R. Meyer, “High-performance interband cascade lasers at 3.8  μm,” Proc. SPIE 8277, 82771E (2012).

Vinnichenko, M. Y.

M. Y. Vinnichenko, L. E. Vorobjev, D. A. Firsov, M. O. Mashko, R. M. Balagula, G. Belenky, L. Shterengas, and G. Kipshidze, “Dependence of the carrier concentration on the current in mid-infrared injection lasers with quantum wells,” Semiconductors 47, 1513–1516 (2013).

von Edlinger, M.

M. von Edlinger, J. Scheuermann, R. Weih, C. Zimmermann, L. Nähle, M. Fischer, J. Koeth, S. Höfling, and M. Kamp, “Monomode interband cascade lasers at 5.2  mm for nitric oxide sensing,” IEEE Photon. Technol. Lett. 26, 480–482 (2014).
[Crossref]

M. von Edlinger, J. Scheuermann, L. Nähle, C. Zimmermann, L. Hildebrandt, M. Fischer, J. Koeth, R. Weih, S. Höfling, and M. Kamp, “DFB interband cascade lasers for tunable laser absorption spectroscopy from 3 to 6  μm,” Proc. SPIE 8993, 899318 (2014).

Vorobjev, L. E.

M. Y. Vinnichenko, L. E. Vorobjev, D. A. Firsov, M. O. Mashko, R. M. Balagula, G. Belenky, L. Shterengas, and G. Kipshidze, “Dependence of the carrier concentration on the current in mid-infrared injection lasers with quantum wells,” Semiconductors 47, 1513–1516 (2013).

Vurgaftman, I.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015).

C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, I. Vurgaftman, J. R. Meyer, and M. Kim, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22, 7702–7710 (2014).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19, 1200210 (2013).

R. P. Leavitt, J. D. Bruno, J. L. Bradshaw, K. M. Lascola, J. T. Pham, F. J. Towner, S. Suchalkin, G. Belenky, I. Vurgaftman, C. L. Canedy, W. W. Bewley, C. S. Kim, M. Kim, C. D. Merritt, and J. R. Meyer, “High-performance interband cascade lasers at 3.8  μm,” Proc. SPIE 8277, 82771E (2012).

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80°C,” Appl. Phys. Lett. 101, 061104 (2012).
[Crossref]

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7−5.6  μm,” Opt. Express 20, 3235–3240 (2012).
[Crossref]

B. A. Ikyo, I. P. Marko, A. R. Adams, S. J. Sweeney, C. L. Canedy, I. Vurgaftman, C. S. Kim, M. Kim, W. W. Bewley, and J. R. Meyer, “Temperature dependence of 4.1  μm mid-infrared type-II “W” interband cascade lasers,” Appl. Phys. Lett. 99, 021102 (2011).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref]

W. W. Bewley, J. R. Lindle, C. L. Canedy, M. Kim, C. S. Kim, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Gain, loss, and internal efficiency in interband cascade lasers emitting at λ = 3.6−4.1  μm,” J. Appl. Phys. 103, 013114 (2008).
[Crossref]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B 26, 1160–1162 (2008).
[Crossref]

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and type-I interband cascade lasers,” Electron. Lett. 32, 45–46 (1996).
[Crossref]

Weih, R.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015).

M. von Edlinger, J. Scheuermann, R. Weih, C. Zimmermann, L. Nähle, M. Fischer, J. Koeth, S. Höfling, and M. Kamp, “Monomode interband cascade lasers at 5.2  mm for nitric oxide sensing,” IEEE Photon. Technol. Lett. 26, 480–482 (2014).
[Crossref]

M. von Edlinger, J. Scheuermann, L. Nähle, C. Zimmermann, L. Hildebrandt, M. Fischer, J. Koeth, R. Weih, S. Höfling, and M. Kamp, “DFB interband cascade lasers for tunable laser absorption spectroscopy from 3 to 6  μm,” Proc. SPIE 8993, 899318 (2014).

R. Weih, A. Bauer, M. Kamp, and S. Höfling, “Interband cascade lasers with AlGaAsSb bulk cladding layers,” Opt. Mater. Express 3, 1624–1631 (2013).

Yang, R. Q.

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and type-I interband cascade lasers,” Electron. Lett. 32, 45–46 (1996).
[Crossref]

R. Q. Yang, “Infrared laser based on intersubband transitions in quantum wells,” Superlattices Microstruct. 17, 77–83 (1995).

Zimmermann, C.

M. von Edlinger, J. Scheuermann, R. Weih, C. Zimmermann, L. Nähle, M. Fischer, J. Koeth, S. Höfling, and M. Kamp, “Monomode interband cascade lasers at 5.2  mm for nitric oxide sensing,” IEEE Photon. Technol. Lett. 26, 480–482 (2014).
[Crossref]

M. von Edlinger, J. Scheuermann, L. Nähle, C. Zimmermann, L. Hildebrandt, M. Fischer, J. Koeth, R. Weih, S. Höfling, and M. Kamp, “DFB interband cascade lasers for tunable laser absorption spectroscopy from 3 to 6  μm,” Proc. SPIE 8993, 899318 (2014).

Appl. Phys. Lett. (2)

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80°C,” Appl. Phys. Lett. 101, 061104 (2012).
[Crossref]

B. A. Ikyo, I. P. Marko, A. R. Adams, S. J. Sweeney, C. L. Canedy, I. Vurgaftman, C. S. Kim, M. Kim, W. W. Bewley, and J. R. Meyer, “Temperature dependence of 4.1  μm mid-infrared type-II “W” interband cascade lasers,” Appl. Phys. Lett. 99, 021102 (2011).
[Crossref]

Electron. Lett. (1)

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and type-I interband cascade lasers,” Electron. Lett. 32, 45–46 (1996).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Buus, “Analytical approximation for the reflectivity of DH lasers,” IEEE J. Quantum Electron. 17, 2257–2258 (1981).

IEEE J. Sel. Top. Quantum Electron. (1)

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19, 1200210 (2013).

IEEE Photon. Technol. Lett. (2)

P. C. Kendall, D. A. Roberts, P. N. Robson, M. J. Adams, and M. J. Robertson, “New formula for semiconductor-laser facet reflectivity,” IEEE Photon. Technol. Lett. 5, 148–150 (1993).
[Crossref]

M. von Edlinger, J. Scheuermann, R. Weih, C. Zimmermann, L. Nähle, M. Fischer, J. Koeth, S. Höfling, and M. Kamp, “Monomode interband cascade lasers at 5.2  mm for nitric oxide sensing,” IEEE Photon. Technol. Lett. 26, 480–482 (2014).
[Crossref]

J. Appl. Phys. (1)

W. W. Bewley, J. R. Lindle, C. L. Canedy, M. Kim, C. S. Kim, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Gain, loss, and internal efficiency in interband cascade lasers emitting at λ = 3.6−4.1  μm,” J. Appl. Phys. 103, 013114 (2008).
[Crossref]

J. Phys. D (1)

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015).

J. Vac. Sci. Technol. B (1)

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B 26, 1160–1162 (2008).
[Crossref]

Nat. Commun. (1)

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (1)

Proc. SPIE (2)

M. von Edlinger, J. Scheuermann, L. Nähle, C. Zimmermann, L. Hildebrandt, M. Fischer, J. Koeth, R. Weih, S. Höfling, and M. Kamp, “DFB interband cascade lasers for tunable laser absorption spectroscopy from 3 to 6  μm,” Proc. SPIE 8993, 899318 (2014).

R. P. Leavitt, J. D. Bruno, J. L. Bradshaw, K. M. Lascola, J. T. Pham, F. J. Towner, S. Suchalkin, G. Belenky, I. Vurgaftman, C. L. Canedy, W. W. Bewley, C. S. Kim, M. Kim, C. D. Merritt, and J. R. Meyer, “High-performance interband cascade lasers at 3.8  μm,” Proc. SPIE 8277, 82771E (2012).

Semicond. Sci. Technol. (1)

A. Chandola, R. Pino, and P. S. Dutta, “Below bandgap optical absorption in tellurium-doped GaSb,” Semicond. Sci. Technol. 20, 886–893 (2005).
[Crossref]

Semiconductors (1)

M. Y. Vinnichenko, L. E. Vorobjev, D. A. Firsov, M. O. Mashko, R. M. Balagula, G. Belenky, L. Shterengas, and G. Kipshidze, “Dependence of the carrier concentration on the current in mid-infrared injection lasers with quantum wells,” Semiconductors 47, 1513–1516 (2013).

Superlattices Microstruct. (1)

R. Q. Yang, “Infrared laser based on intersubband transitions in quantum wells,” Superlattices Microstruct. 17, 77–83 (1995).

Other (1)

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. External differential quantum efficiency per stage (two facets) for 2 mm long, 150 μm wide ridges with uncoated facets, fabricated from (a) Wafer A and (b) Wafer B.
Fig. 2.
Fig. 2. Inverse external differential quantum efficiency per stage for (a) Wafer A and (b) Wafer B at room temperature and several current densities between 1 and 2.5 kA / cm 2 . The lines are linear fits.
Fig. 3.
Fig. 3. (a) Internal efficiency and (b) internal loss versus injected current density for Wafers A and B at T = 300 K .
Fig. 4.
Fig. 4. Inverse external differential quantum efficiency per stage versus cavity length at three temperatures for Wafer A at J = 2 kA / cm 2 and Wafer B at 1.2 kA / cm 2 . The lines are linear fits.
Fig. 5.
Fig. 5. (a) Fitted internal efficiency and (b) internal loss for Wafers A (red) and B (blue) versus operating temperature at J = 0 (extrapolated, filled points) and 2 kA / cm 2 (open points).
Fig. 6.
Fig. 6. Logarithm of threshold current density versus total threshold gain at three temperatures for (a) Wafer A and (b) Wafer B. The five points at each temperature correspond to the five cavity lengths with the shortest cavity requiring the highest gain.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

EDQE = n i 1 + α i L c / ln ( 1 / R ) .

Metrics