Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Analysis of stationary power/amplitude distributions for multiple channels of sampled FBGs

Not Accessible

Your library or personal account may give you access

Abstract

Stationary power/amplitude distributions for multiple channels of the sampled fiber Bragg grating (SFBG) along the grating length are analyzed. Unlike a uniform FBG, the SFBG has multiple channels in the reflection spectrum, not a single channel. Thus, the stationary power/amplitude distributions for these multiple channels are analyzed by using two different theoretical models. In the first model, the SFBG is regarded as a set of grating sections and non-grating sections, which are alternately stacked. A step-like distribution is obtained for the corresponding power/amplitude of each channel along the grating length. While, in the second model, the SFBG is decomposed into multiple uniform “ghost” gratings, and a continuous distribution is obtained for each ghost grating (i.e., each channel). After a comparison, the distributions obtained in the two models are identical, and the equivalence between the two models is demonstrated. In addition, the impacts of the duty cycle on the power/amplitude distributions of multiple channels of SFBG are presented.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Analysis for reflection peaks of multiple-phase-shift based sampled fiber Bragg gratings and application in high channel-count filter design

Kun Hua Wen, Lian Shan Yan, Wei Pan, Bin Luo, Xi Hua Zou, Jia Ye, and Ya Nan Ma
Appl. Opt. 48(29) 5438-5444 (2009)

Identical-dual-bandpass sampled fiber Bragg grating and its application to ultranarrow filters

Xueming Liu, Aoxiang Lin, Guoyong Sun, Dae Seung Moon, Dusun Hwang, and Youngjoo Chung
Appl. Opt. 47(30) 5637-5643 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.