Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Holographic humidity response of slanted gratings in moisture-absorbing acrylamide photopolymer

Not Accessible

Your library or personal account may give you access

Abstract

Holographic humidity response is characterized in detail using transmission and reflection geometry in moisture-absorbing acrylamide photopolymer. The diffraction spectrum and its temporal evolution at various relative humidity are measured and analyzed. The quantitative relations between relative humidity and holographic properties of slanted gratings are determined. The responsibility of holographic gratings for various relative humidity is observed by the spectrum response of gratings. The extracted humidity constants reflect the applicability of reflection and transmission gratings at different humidity regions. The humidity reversibility experiment is achieved for confirming repeatability of the sensor. These experiments provide a probability for improving the applicability of a holographic humidity sensor. Finally, the extended diffusion model is derived by introducing the expansion coefficient to describe the dynamic swelling process. This work can accelerate development of the holographic sensor and provide a novel strategy for exploring the swelling mechanism of photopolymer.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Improvement of holographic sensing response in substrate-free acrylamide photopolymer

Ke Zhou, Yaohui Geng, Hongpeng Liu, Shichan Wang, Dongyao Mao, and Dan Yu
Appl. Opt. 56(13) 3714-3724 (2017)

Two-way shift of wavelength in holographic sensing of organic vapor in nanozeolites dispersed acrylamide photopolymer

Dongyao Mao, Yaohui Geng, Hongpeng Liu, Ke Zhou, Lihong Xian, and Dan Yu
Appl. Opt. 55(23) 6212-6221 (2016)

Enhancement of spectrum strength in holographic sensing in nanozeolites dispersed acrylamide photopolymer

Dan Yu, Hongpeng Liu, Dongyao Mao, Yaohui Geng, Weibo Wang, Liping Sun, and Jiang Lv
Opt. Express 23(22) 29113-29126 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved