Abstract

An efficient and simple and convenient technique for transparent samples thickness measurements by Raman spectroscopy is suggested. The elastic scattering can be effectively used for sample border indication if the refractive index changes more than 3%, while it fails to detect an ice-to-water border of floating ice. The alternative is to use Raman spectroscopy to detect the interface between different layers of transparent materials. The difference between the Raman spectra of poly methyl methacrylate (PMMA) and water, and between ice and liquid water were employed to locate the PMMA-water and ice-water interfaces, while elastic scattering was used for air-solid surface detection. This approach yields an error of 2%–5% indicating that it is promising to express a remote and noninvasive thickness measurement technique in field experiments.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Remote sensing of seawater and drifting ice in Svalbard fjords by compact Raman lidar

Alexey F. Bunkin, Vladimir K. Klinkov, Vasily N. Lednev, Dmitry L. Lushnikov, Aleksey V. Marchenko, Eugene G. Morozov, Sergey M. Pershin, and Renat N. Yulmetov
Appl. Opt. 51(22) 5477-5485 (2012)

Ship wake detection by Raman lidar

Alexey F. Bunkin, Vladimir K. Klinkov, Vladislav A. Lukyanchenko, and Sergey M. Pershin
Appl. Opt. 50(4) A86-A89 (2011)

Remote Raman measurements of minerals, organics, and inorganics at 430  m range

Tayro E. Acosta-Maeda, Anupam K. Misra, Lloyd G. Muzangwa, Genesis Berlanga, Dalton Muchow, John Porter, and Shiv K. Sharma
Appl. Opt. 55(36) 10283-10289 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. Haas and M. Druckenmiller, Ice Thickness and Roughness Measurements, Field Techniques for Sea-Ice Research, H. Eicken, ed. (University of Alaska, 2009).
  2. P. Wadhams, “Sea ice thickness changes and their relation to climate,” in The Polar Oceans and Their Role in Shaping the Global Environment, O. M. Johannessen, R. D. Muench, and J. E. Overland, eds. (American Geophysical Union, 1994).
  3. S. M. Pershin, A. F. Bunkin, V. K. Klinkov, V. N. Lednev, D. Lushnikov, E. G. Morozov, and R. N. Yul’metov, “Remote sensing of Arctic fjords by Raman Lidar: heat transfer screening by layer of glacier’s relict water,” Phys. Wave Phenom. 20, 212–222 (2012).
  4. O. T. Gudmestad, A. I. Alhimenko, S. Løset, K. N. Shkhinek, A. Tørum, and A. Jensen, “Engineering aspects related to Arctic offshore developments,” in Student’s Book for Institutes of Higher Education (LAN, 2007).
  5. K. V. Hoyland, “Ice thickness, growth and salinity in Van Mijenfjorden, Svalbard, Norway,” Polar Research 28, 339–352 (2009).
  6. C. Haas and P. Jochmann, “Continuous EM and ULS thickness profiling in support of ice force measurements,” in Proceedings of the 17th International Conference on Port and Ocean Engineering under Arctic Conditions (Norwegian University of Science and Technology, 2003).
  7. K. J. Campbell and A. S. Orange, “A continuous profile of sea ice and freshwater ice thickness by impulse radar,” Polar Record 17, 31–41 (1974).
  8. M. Huntemann, G. Heygster, L. Kaleschke, T. Krumpen, M. Mäkynen, and M. Drusch, “Empirical sea ice thickness retrieval during the freeze up period from SMOS high incident angle observations,” Cryosphere Discuss. 7, 4379–4405 (2013).
  9. L. Kaleschke, X. Tian-Kunze, N. Maaß, M. Mäkynen, and M. Drusch, “Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period,” Geophys. Res. Lett. 39, L05501 (2012).
    [Crossref]
  10. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, 1985).
  11. A. F. Bunkin and K. I. Voliak, Laser Remote Sensing of the Ocean: Methods and Applications (Wiley, 2001), p. 256.
  12. K.-J. Lee, Y. Park, A. Bunkin, R. Nunes, S. Pershin, and K. Voliak, “Helicopter-based Lidar system for monitoring the upper ocean and terrain surface,” Appl. Opt. 41, 401–406 (2002).
    [Crossref]
  13. A. F. Bunkin, V. K. Klinkov, V. N. Lednev, D. L. Lushnikov, A. V. Marchenko, E. G. Morozov, S. M. Pershin, and R. N. Yulmetov, “Remote sensing of seawater and drifting ice in Svalbard fjords by compact Raman LIDAR,” Appl. Opt. 51, 5477–5485 (2012).
    [Crossref]
  14. A. F. Bunkin, V. K. Klinkov, V. A. Lukyanchenko, and S. M. Pershin, “Ship wake detection by Raman lidar,” Appl. Opt. 50, A86–A89 (2011).
    [Crossref]
  15. S. M. Pershin and A. F. Bunkin, “A jump in the position and width of the Raman band envelope of O–H valence vibrations upon phase transitions of the first and second kinds in water,” Opt. Spectrosc. 85, 190–193 (1998).
  16. S. H. Park, Y. G. Kim, D. Kim, H. D. Cheong, W. S. Choi, and J. I. Lee, “Selecting characteristic Raman wavelengths to distinguish liquid water, water vapor, and ice water,” Appl. Opt. 14, 209–214 (2010).
  17. R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, “Remotely sensed primary production in the western Ross Sea: results of in situ tuned models,” Antarctic Science 15, 77–84 (2003).
    [Crossref]
  18. A. F. Bunkin and S. M. Pershin, “Observation of rotational resonances of ortho and para spin isomers of the H2O molecule in hexagonal ice using four-photon laser spectroscopy,” Phys. Wave Phenom. 18, 237–239 (2010).
  19. F. Rulla, A. Vegas, A. Sansano, and P. Sobron, “Analysis of Arctic ices by remote Raman spectroscopy,” Spectroch. Acta A 80, 148–155 (2011).
  20. W. A. England, S. N. Jenny, and D. A. Greenhalgh, “Chromium oxide film thickness measurements using spontaneous Raman scattering,” J. Raman Spectrosc. 15, 156–159 (1984).
    [Crossref]
  21. K. F. McCarty, “Raman scattering as a technique of measuring film thickness: interference effects in thin growing films,” Appl. Opt. 26, 4482–4486 (1987).
    [Crossref]
  22. A. O. Kivioja, A. S. Jääskeläinena, V. Ahteeb, and T. Vuorinen, “Thickness measurement of thin polymer films by total internal reflection Raman and attenuated total reflection infrared spectroscopy,” Vibrational Spectroscopy 61, 1–9 (2012).
    [Crossref]
  23. S. M. Pershin, V. N. Lednev, V. K. Klinkov, R. N. Yulmetov, and A. F. Bunkin, “Ice thickness measurements by Raman scattering,” Opt. Lett. 39, 2573–2575 (2014).
    [Crossref]
  24. D. A. Leonard, B. Caputo, and F. E. Hoge, “Remote sensing of subsurface water temperature by Raman scattering,” Appl. Opt. 18, 1732–1745 (1979).
    [Crossref]
  25. S. M. Pershin, A. F. Bunkin, and V. A. Luk’yanchenko, “Evolution of the spectral component of ice in the OH band of water at temperatures from 13 to 99°C,” Quantum Electron. 40, 1146–1148 (2011).
    [Crossref]
  26. M. Becucci, S. Cavalieri, R. Eramo, L. Fini, and M. Materazzi, “Raman spectroscopy for water temperature sensing,” Laser Phys. 9, 422–425 (1999).
  27. B. Lienert, J. Porter, and S. K. Sharma, “Simultaneous measurement of spectra at multiple ranges using a single spectrometer,” Appl. Opt. 48, 4762–4766 (2009).
    [Crossref]
  28. S. M. Pershin, A. N. Lyash, V. S. Makarov, K. Hamal, I. Prochazka, and B. Sopko, “Multilayer cloud monitoring by micro-Joule lidar based on photon counting receiver and diode laser,” Proc. SPIE 7355, 73550S (2009).

2014 (1)

2013 (1)

M. Huntemann, G. Heygster, L. Kaleschke, T. Krumpen, M. Mäkynen, and M. Drusch, “Empirical sea ice thickness retrieval during the freeze up period from SMOS high incident angle observations,” Cryosphere Discuss. 7, 4379–4405 (2013).

2012 (4)

L. Kaleschke, X. Tian-Kunze, N. Maaß, M. Mäkynen, and M. Drusch, “Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period,” Geophys. Res. Lett. 39, L05501 (2012).
[Crossref]

S. M. Pershin, A. F. Bunkin, V. K. Klinkov, V. N. Lednev, D. Lushnikov, E. G. Morozov, and R. N. Yul’metov, “Remote sensing of Arctic fjords by Raman Lidar: heat transfer screening by layer of glacier’s relict water,” Phys. Wave Phenom. 20, 212–222 (2012).

A. O. Kivioja, A. S. Jääskeläinena, V. Ahteeb, and T. Vuorinen, “Thickness measurement of thin polymer films by total internal reflection Raman and attenuated total reflection infrared spectroscopy,” Vibrational Spectroscopy 61, 1–9 (2012).
[Crossref]

A. F. Bunkin, V. K. Klinkov, V. N. Lednev, D. L. Lushnikov, A. V. Marchenko, E. G. Morozov, S. M. Pershin, and R. N. Yulmetov, “Remote sensing of seawater and drifting ice in Svalbard fjords by compact Raman LIDAR,” Appl. Opt. 51, 5477–5485 (2012).
[Crossref]

2011 (3)

A. F. Bunkin, V. K. Klinkov, V. A. Lukyanchenko, and S. M. Pershin, “Ship wake detection by Raman lidar,” Appl. Opt. 50, A86–A89 (2011).
[Crossref]

S. M. Pershin, A. F. Bunkin, and V. A. Luk’yanchenko, “Evolution of the spectral component of ice in the OH band of water at temperatures from 13 to 99°C,” Quantum Electron. 40, 1146–1148 (2011).
[Crossref]

F. Rulla, A. Vegas, A. Sansano, and P. Sobron, “Analysis of Arctic ices by remote Raman spectroscopy,” Spectroch. Acta A 80, 148–155 (2011).

2010 (2)

S. H. Park, Y. G. Kim, D. Kim, H. D. Cheong, W. S. Choi, and J. I. Lee, “Selecting characteristic Raman wavelengths to distinguish liquid water, water vapor, and ice water,” Appl. Opt. 14, 209–214 (2010).

A. F. Bunkin and S. M. Pershin, “Observation of rotational resonances of ortho and para spin isomers of the H2O molecule in hexagonal ice using four-photon laser spectroscopy,” Phys. Wave Phenom. 18, 237–239 (2010).

2009 (3)

B. Lienert, J. Porter, and S. K. Sharma, “Simultaneous measurement of spectra at multiple ranges using a single spectrometer,” Appl. Opt. 48, 4762–4766 (2009).
[Crossref]

S. M. Pershin, A. N. Lyash, V. S. Makarov, K. Hamal, I. Prochazka, and B. Sopko, “Multilayer cloud monitoring by micro-Joule lidar based on photon counting receiver and diode laser,” Proc. SPIE 7355, 73550S (2009).

K. V. Hoyland, “Ice thickness, growth and salinity in Van Mijenfjorden, Svalbard, Norway,” Polar Research 28, 339–352 (2009).

2003 (1)

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, “Remotely sensed primary production in the western Ross Sea: results of in situ tuned models,” Antarctic Science 15, 77–84 (2003).
[Crossref]

2002 (1)

1999 (1)

M. Becucci, S. Cavalieri, R. Eramo, L. Fini, and M. Materazzi, “Raman spectroscopy for water temperature sensing,” Laser Phys. 9, 422–425 (1999).

1998 (1)

S. M. Pershin and A. F. Bunkin, “A jump in the position and width of the Raman band envelope of O–H valence vibrations upon phase transitions of the first and second kinds in water,” Opt. Spectrosc. 85, 190–193 (1998).

1987 (1)

1984 (1)

W. A. England, S. N. Jenny, and D. A. Greenhalgh, “Chromium oxide film thickness measurements using spontaneous Raman scattering,” J. Raman Spectrosc. 15, 156–159 (1984).
[Crossref]

1979 (1)

1974 (1)

K. J. Campbell and A. S. Orange, “A continuous profile of sea ice and freshwater ice thickness by impulse radar,” Polar Record 17, 31–41 (1974).

Ahteeb, V.

A. O. Kivioja, A. S. Jääskeläinena, V. Ahteeb, and T. Vuorinen, “Thickness measurement of thin polymer films by total internal reflection Raman and attenuated total reflection infrared spectroscopy,” Vibrational Spectroscopy 61, 1–9 (2012).
[Crossref]

Alhimenko, A. I.

O. T. Gudmestad, A. I. Alhimenko, S. Løset, K. N. Shkhinek, A. Tørum, and A. Jensen, “Engineering aspects related to Arctic offshore developments,” in Student’s Book for Institutes of Higher Education (LAN, 2007).

Artamonov, E.

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, “Remotely sensed primary production in the western Ross Sea: results of in situ tuned models,” Antarctic Science 15, 77–84 (2003).
[Crossref]

Barbini, R.

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, “Remotely sensed primary production in the western Ross Sea: results of in situ tuned models,” Antarctic Science 15, 77–84 (2003).
[Crossref]

Becucci, M.

M. Becucci, S. Cavalieri, R. Eramo, L. Fini, and M. Materazzi, “Raman spectroscopy for water temperature sensing,” Laser Phys. 9, 422–425 (1999).

Bunkin, A.

Bunkin, A. F.

S. M. Pershin, V. N. Lednev, V. K. Klinkov, R. N. Yulmetov, and A. F. Bunkin, “Ice thickness measurements by Raman scattering,” Opt. Lett. 39, 2573–2575 (2014).
[Crossref]

A. F. Bunkin, V. K. Klinkov, V. N. Lednev, D. L. Lushnikov, A. V. Marchenko, E. G. Morozov, S. M. Pershin, and R. N. Yulmetov, “Remote sensing of seawater and drifting ice in Svalbard fjords by compact Raman LIDAR,” Appl. Opt. 51, 5477–5485 (2012).
[Crossref]

S. M. Pershin, A. F. Bunkin, V. K. Klinkov, V. N. Lednev, D. Lushnikov, E. G. Morozov, and R. N. Yul’metov, “Remote sensing of Arctic fjords by Raman Lidar: heat transfer screening by layer of glacier’s relict water,” Phys. Wave Phenom. 20, 212–222 (2012).

S. M. Pershin, A. F. Bunkin, and V. A. Luk’yanchenko, “Evolution of the spectral component of ice in the OH band of water at temperatures from 13 to 99°C,” Quantum Electron. 40, 1146–1148 (2011).
[Crossref]

A. F. Bunkin, V. K. Klinkov, V. A. Lukyanchenko, and S. M. Pershin, “Ship wake detection by Raman lidar,” Appl. Opt. 50, A86–A89 (2011).
[Crossref]

A. F. Bunkin and S. M. Pershin, “Observation of rotational resonances of ortho and para spin isomers of the H2O molecule in hexagonal ice using four-photon laser spectroscopy,” Phys. Wave Phenom. 18, 237–239 (2010).

S. M. Pershin and A. F. Bunkin, “A jump in the position and width of the Raman band envelope of O–H valence vibrations upon phase transitions of the first and second kinds in water,” Opt. Spectrosc. 85, 190–193 (1998).

A. F. Bunkin and K. I. Voliak, Laser Remote Sensing of the Ocean: Methods and Applications (Wiley, 2001), p. 256.

Campbell, K. J.

K. J. Campbell and A. S. Orange, “A continuous profile of sea ice and freshwater ice thickness by impulse radar,” Polar Record 17, 31–41 (1974).

Caputo, B.

Cavalieri, S.

M. Becucci, S. Cavalieri, R. Eramo, L. Fini, and M. Materazzi, “Raman spectroscopy for water temperature sensing,” Laser Phys. 9, 422–425 (1999).

Cheong, H. D.

S. H. Park, Y. G. Kim, D. Kim, H. D. Cheong, W. S. Choi, and J. I. Lee, “Selecting characteristic Raman wavelengths to distinguish liquid water, water vapor, and ice water,” Appl. Opt. 14, 209–214 (2010).

Choi, W. S.

S. H. Park, Y. G. Kim, D. Kim, H. D. Cheong, W. S. Choi, and J. I. Lee, “Selecting characteristic Raman wavelengths to distinguish liquid water, water vapor, and ice water,” Appl. Opt. 14, 209–214 (2010).

Colao, F.

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, “Remotely sensed primary production in the western Ross Sea: results of in situ tuned models,” Antarctic Science 15, 77–84 (2003).
[Crossref]

Druckenmiller, M.

C. Haas and M. Druckenmiller, Ice Thickness and Roughness Measurements, Field Techniques for Sea-Ice Research, H. Eicken, ed. (University of Alaska, 2009).

Drusch, M.

M. Huntemann, G. Heygster, L. Kaleschke, T. Krumpen, M. Mäkynen, and M. Drusch, “Empirical sea ice thickness retrieval during the freeze up period from SMOS high incident angle observations,” Cryosphere Discuss. 7, 4379–4405 (2013).

L. Kaleschke, X. Tian-Kunze, N. Maaß, M. Mäkynen, and M. Drusch, “Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period,” Geophys. Res. Lett. 39, L05501 (2012).
[Crossref]

England, W. A.

W. A. England, S. N. Jenny, and D. A. Greenhalgh, “Chromium oxide film thickness measurements using spontaneous Raman scattering,” J. Raman Spectrosc. 15, 156–159 (1984).
[Crossref]

Eramo, R.

M. Becucci, S. Cavalieri, R. Eramo, L. Fini, and M. Materazzi, “Raman spectroscopy for water temperature sensing,” Laser Phys. 9, 422–425 (1999).

Fantoni, R.

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, “Remotely sensed primary production in the western Ross Sea: results of in situ tuned models,” Antarctic Science 15, 77–84 (2003).
[Crossref]

Fini, L.

M. Becucci, S. Cavalieri, R. Eramo, L. Fini, and M. Materazzi, “Raman spectroscopy for water temperature sensing,” Laser Phys. 9, 422–425 (1999).

Fiorani, L.

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, “Remotely sensed primary production in the western Ross Sea: results of in situ tuned models,” Antarctic Science 15, 77–84 (2003).
[Crossref]

Galli, M.

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, “Remotely sensed primary production in the western Ross Sea: results of in situ tuned models,” Antarctic Science 15, 77–84 (2003).
[Crossref]

Greenhalgh, D. A.

W. A. England, S. N. Jenny, and D. A. Greenhalgh, “Chromium oxide film thickness measurements using spontaneous Raman scattering,” J. Raman Spectrosc. 15, 156–159 (1984).
[Crossref]

Gudmestad, O. T.

O. T. Gudmestad, A. I. Alhimenko, S. Løset, K. N. Shkhinek, A. Tørum, and A. Jensen, “Engineering aspects related to Arctic offshore developments,” in Student’s Book for Institutes of Higher Education (LAN, 2007).

Haas, C.

C. Haas and P. Jochmann, “Continuous EM and ULS thickness profiling in support of ice force measurements,” in Proceedings of the 17th International Conference on Port and Ocean Engineering under Arctic Conditions (Norwegian University of Science and Technology, 2003).

C. Haas and M. Druckenmiller, Ice Thickness and Roughness Measurements, Field Techniques for Sea-Ice Research, H. Eicken, ed. (University of Alaska, 2009).

Hamal, K.

S. M. Pershin, A. N. Lyash, V. S. Makarov, K. Hamal, I. Prochazka, and B. Sopko, “Multilayer cloud monitoring by micro-Joule lidar based on photon counting receiver and diode laser,” Proc. SPIE 7355, 73550S (2009).

Heygster, G.

M. Huntemann, G. Heygster, L. Kaleschke, T. Krumpen, M. Mäkynen, and M. Drusch, “Empirical sea ice thickness retrieval during the freeze up period from SMOS high incident angle observations,” Cryosphere Discuss. 7, 4379–4405 (2013).

Hoge, F. E.

Hoyland, K. V.

K. V. Hoyland, “Ice thickness, growth and salinity in Van Mijenfjorden, Svalbard, Norway,” Polar Research 28, 339–352 (2009).

Huntemann, M.

M. Huntemann, G. Heygster, L. Kaleschke, T. Krumpen, M. Mäkynen, and M. Drusch, “Empirical sea ice thickness retrieval during the freeze up period from SMOS high incident angle observations,” Cryosphere Discuss. 7, 4379–4405 (2013).

Jääskeläinena, A. S.

A. O. Kivioja, A. S. Jääskeläinena, V. Ahteeb, and T. Vuorinen, “Thickness measurement of thin polymer films by total internal reflection Raman and attenuated total reflection infrared spectroscopy,” Vibrational Spectroscopy 61, 1–9 (2012).
[Crossref]

Jenny, S. N.

W. A. England, S. N. Jenny, and D. A. Greenhalgh, “Chromium oxide film thickness measurements using spontaneous Raman scattering,” J. Raman Spectrosc. 15, 156–159 (1984).
[Crossref]

Jensen, A.

O. T. Gudmestad, A. I. Alhimenko, S. Løset, K. N. Shkhinek, A. Tørum, and A. Jensen, “Engineering aspects related to Arctic offshore developments,” in Student’s Book for Institutes of Higher Education (LAN, 2007).

Jochmann, P.

C. Haas and P. Jochmann, “Continuous EM and ULS thickness profiling in support of ice force measurements,” in Proceedings of the 17th International Conference on Port and Ocean Engineering under Arctic Conditions (Norwegian University of Science and Technology, 2003).

Kaleschke, L.

M. Huntemann, G. Heygster, L. Kaleschke, T. Krumpen, M. Mäkynen, and M. Drusch, “Empirical sea ice thickness retrieval during the freeze up period from SMOS high incident angle observations,” Cryosphere Discuss. 7, 4379–4405 (2013).

L. Kaleschke, X. Tian-Kunze, N. Maaß, M. Mäkynen, and M. Drusch, “Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period,” Geophys. Res. Lett. 39, L05501 (2012).
[Crossref]

Kim, D.

S. H. Park, Y. G. Kim, D. Kim, H. D. Cheong, W. S. Choi, and J. I. Lee, “Selecting characteristic Raman wavelengths to distinguish liquid water, water vapor, and ice water,” Appl. Opt. 14, 209–214 (2010).

Kim, Y. G.

S. H. Park, Y. G. Kim, D. Kim, H. D. Cheong, W. S. Choi, and J. I. Lee, “Selecting characteristic Raman wavelengths to distinguish liquid water, water vapor, and ice water,” Appl. Opt. 14, 209–214 (2010).

Kivioja, A. O.

A. O. Kivioja, A. S. Jääskeläinena, V. Ahteeb, and T. Vuorinen, “Thickness measurement of thin polymer films by total internal reflection Raman and attenuated total reflection infrared spectroscopy,” Vibrational Spectroscopy 61, 1–9 (2012).
[Crossref]

Klinkov, V. K.

Krumpen, T.

M. Huntemann, G. Heygster, L. Kaleschke, T. Krumpen, M. Mäkynen, and M. Drusch, “Empirical sea ice thickness retrieval during the freeze up period from SMOS high incident angle observations,” Cryosphere Discuss. 7, 4379–4405 (2013).

Lednev, V. N.

Lee, J. I.

S. H. Park, Y. G. Kim, D. Kim, H. D. Cheong, W. S. Choi, and J. I. Lee, “Selecting characteristic Raman wavelengths to distinguish liquid water, water vapor, and ice water,” Appl. Opt. 14, 209–214 (2010).

Lee, K.-J.

Leonard, D. A.

Lienert, B.

Løset, S.

O. T. Gudmestad, A. I. Alhimenko, S. Løset, K. N. Shkhinek, A. Tørum, and A. Jensen, “Engineering aspects related to Arctic offshore developments,” in Student’s Book for Institutes of Higher Education (LAN, 2007).

Luk’yanchenko, V. A.

S. M. Pershin, A. F. Bunkin, and V. A. Luk’yanchenko, “Evolution of the spectral component of ice in the OH band of water at temperatures from 13 to 99°C,” Quantum Electron. 40, 1146–1148 (2011).
[Crossref]

Lukyanchenko, V. A.

Lushnikov, D.

S. M. Pershin, A. F. Bunkin, V. K. Klinkov, V. N. Lednev, D. Lushnikov, E. G. Morozov, and R. N. Yul’metov, “Remote sensing of Arctic fjords by Raman Lidar: heat transfer screening by layer of glacier’s relict water,” Phys. Wave Phenom. 20, 212–222 (2012).

Lushnikov, D. L.

Lyash, A. N.

S. M. Pershin, A. N. Lyash, V. S. Makarov, K. Hamal, I. Prochazka, and B. Sopko, “Multilayer cloud monitoring by micro-Joule lidar based on photon counting receiver and diode laser,” Proc. SPIE 7355, 73550S (2009).

Maaß, N.

L. Kaleschke, X. Tian-Kunze, N. Maaß, M. Mäkynen, and M. Drusch, “Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period,” Geophys. Res. Lett. 39, L05501 (2012).
[Crossref]

Makarov, V. S.

S. M. Pershin, A. N. Lyash, V. S. Makarov, K. Hamal, I. Prochazka, and B. Sopko, “Multilayer cloud monitoring by micro-Joule lidar based on photon counting receiver and diode laser,” Proc. SPIE 7355, 73550S (2009).

Mäkynen, M.

M. Huntemann, G. Heygster, L. Kaleschke, T. Krumpen, M. Mäkynen, and M. Drusch, “Empirical sea ice thickness retrieval during the freeze up period from SMOS high incident angle observations,” Cryosphere Discuss. 7, 4379–4405 (2013).

L. Kaleschke, X. Tian-Kunze, N. Maaß, M. Mäkynen, and M. Drusch, “Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period,” Geophys. Res. Lett. 39, L05501 (2012).
[Crossref]

Marchenko, A. V.

Materazzi, M.

M. Becucci, S. Cavalieri, R. Eramo, L. Fini, and M. Materazzi, “Raman spectroscopy for water temperature sensing,” Laser Phys. 9, 422–425 (1999).

McCarty, K. F.

Measures, R. M.

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, 1985).

Morozov, E. G.

S. M. Pershin, A. F. Bunkin, V. K. Klinkov, V. N. Lednev, D. Lushnikov, E. G. Morozov, and R. N. Yul’metov, “Remote sensing of Arctic fjords by Raman Lidar: heat transfer screening by layer of glacier’s relict water,” Phys. Wave Phenom. 20, 212–222 (2012).

A. F. Bunkin, V. K. Klinkov, V. N. Lednev, D. L. Lushnikov, A. V. Marchenko, E. G. Morozov, S. M. Pershin, and R. N. Yulmetov, “Remote sensing of seawater and drifting ice in Svalbard fjords by compact Raman LIDAR,” Appl. Opt. 51, 5477–5485 (2012).
[Crossref]

Nunes, R.

Orange, A. S.

K. J. Campbell and A. S. Orange, “A continuous profile of sea ice and freshwater ice thickness by impulse radar,” Polar Record 17, 31–41 (1974).

Palucci, A.

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, “Remotely sensed primary production in the western Ross Sea: results of in situ tuned models,” Antarctic Science 15, 77–84 (2003).
[Crossref]

Park, S. H.

S. H. Park, Y. G. Kim, D. Kim, H. D. Cheong, W. S. Choi, and J. I. Lee, “Selecting characteristic Raman wavelengths to distinguish liquid water, water vapor, and ice water,” Appl. Opt. 14, 209–214 (2010).

Park, Y.

Pershin, S.

Pershin, S. M.

S. M. Pershin, V. N. Lednev, V. K. Klinkov, R. N. Yulmetov, and A. F. Bunkin, “Ice thickness measurements by Raman scattering,” Opt. Lett. 39, 2573–2575 (2014).
[Crossref]

A. F. Bunkin, V. K. Klinkov, V. N. Lednev, D. L. Lushnikov, A. V. Marchenko, E. G. Morozov, S. M. Pershin, and R. N. Yulmetov, “Remote sensing of seawater and drifting ice in Svalbard fjords by compact Raman LIDAR,” Appl. Opt. 51, 5477–5485 (2012).
[Crossref]

S. M. Pershin, A. F. Bunkin, V. K. Klinkov, V. N. Lednev, D. Lushnikov, E. G. Morozov, and R. N. Yul’metov, “Remote sensing of Arctic fjords by Raman Lidar: heat transfer screening by layer of glacier’s relict water,” Phys. Wave Phenom. 20, 212–222 (2012).

A. F. Bunkin, V. K. Klinkov, V. A. Lukyanchenko, and S. M. Pershin, “Ship wake detection by Raman lidar,” Appl. Opt. 50, A86–A89 (2011).
[Crossref]

S. M. Pershin, A. F. Bunkin, and V. A. Luk’yanchenko, “Evolution of the spectral component of ice in the OH band of water at temperatures from 13 to 99°C,” Quantum Electron. 40, 1146–1148 (2011).
[Crossref]

A. F. Bunkin and S. M. Pershin, “Observation of rotational resonances of ortho and para spin isomers of the H2O molecule in hexagonal ice using four-photon laser spectroscopy,” Phys. Wave Phenom. 18, 237–239 (2010).

S. M. Pershin, A. N. Lyash, V. S. Makarov, K. Hamal, I. Prochazka, and B. Sopko, “Multilayer cloud monitoring by micro-Joule lidar based on photon counting receiver and diode laser,” Proc. SPIE 7355, 73550S (2009).

S. M. Pershin and A. F. Bunkin, “A jump in the position and width of the Raman band envelope of O–H valence vibrations upon phase transitions of the first and second kinds in water,” Opt. Spectrosc. 85, 190–193 (1998).

Porter, J.

Prochazka, I.

S. M. Pershin, A. N. Lyash, V. S. Makarov, K. Hamal, I. Prochazka, and B. Sopko, “Multilayer cloud monitoring by micro-Joule lidar based on photon counting receiver and diode laser,” Proc. SPIE 7355, 73550S (2009).

Rulla, F.

F. Rulla, A. Vegas, A. Sansano, and P. Sobron, “Analysis of Arctic ices by remote Raman spectroscopy,” Spectroch. Acta A 80, 148–155 (2011).

Sansano, A.

F. Rulla, A. Vegas, A. Sansano, and P. Sobron, “Analysis of Arctic ices by remote Raman spectroscopy,” Spectroch. Acta A 80, 148–155 (2011).

Sharma, S. K.

Shkhinek, K. N.

O. T. Gudmestad, A. I. Alhimenko, S. Løset, K. N. Shkhinek, A. Tørum, and A. Jensen, “Engineering aspects related to Arctic offshore developments,” in Student’s Book for Institutes of Higher Education (LAN, 2007).

Sobron, P.

F. Rulla, A. Vegas, A. Sansano, and P. Sobron, “Analysis of Arctic ices by remote Raman spectroscopy,” Spectroch. Acta A 80, 148–155 (2011).

Sopko, B.

S. M. Pershin, A. N. Lyash, V. S. Makarov, K. Hamal, I. Prochazka, and B. Sopko, “Multilayer cloud monitoring by micro-Joule lidar based on photon counting receiver and diode laser,” Proc. SPIE 7355, 73550S (2009).

Tian-Kunze, X.

L. Kaleschke, X. Tian-Kunze, N. Maaß, M. Mäkynen, and M. Drusch, “Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period,” Geophys. Res. Lett. 39, L05501 (2012).
[Crossref]

Tørum, A.

O. T. Gudmestad, A. I. Alhimenko, S. Løset, K. N. Shkhinek, A. Tørum, and A. Jensen, “Engineering aspects related to Arctic offshore developments,” in Student’s Book for Institutes of Higher Education (LAN, 2007).

Vegas, A.

F. Rulla, A. Vegas, A. Sansano, and P. Sobron, “Analysis of Arctic ices by remote Raman spectroscopy,” Spectroch. Acta A 80, 148–155 (2011).

Voliak, K.

Voliak, K. I.

A. F. Bunkin and K. I. Voliak, Laser Remote Sensing of the Ocean: Methods and Applications (Wiley, 2001), p. 256.

Vuorinen, T.

A. O. Kivioja, A. S. Jääskeläinena, V. Ahteeb, and T. Vuorinen, “Thickness measurement of thin polymer films by total internal reflection Raman and attenuated total reflection infrared spectroscopy,” Vibrational Spectroscopy 61, 1–9 (2012).
[Crossref]

Wadhams, P.

P. Wadhams, “Sea ice thickness changes and their relation to climate,” in The Polar Oceans and Their Role in Shaping the Global Environment, O. M. Johannessen, R. D. Muench, and J. E. Overland, eds. (American Geophysical Union, 1994).

Yul’metov, R. N.

S. M. Pershin, A. F. Bunkin, V. K. Klinkov, V. N. Lednev, D. Lushnikov, E. G. Morozov, and R. N. Yul’metov, “Remote sensing of Arctic fjords by Raman Lidar: heat transfer screening by layer of glacier’s relict water,” Phys. Wave Phenom. 20, 212–222 (2012).

Yulmetov, R. N.

Antarctic Science (1)

R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, “Remotely sensed primary production in the western Ross Sea: results of in situ tuned models,” Antarctic Science 15, 77–84 (2003).
[Crossref]

Appl. Opt. (7)

Cryosphere Discuss. (1)

M. Huntemann, G. Heygster, L. Kaleschke, T. Krumpen, M. Mäkynen, and M. Drusch, “Empirical sea ice thickness retrieval during the freeze up period from SMOS high incident angle observations,” Cryosphere Discuss. 7, 4379–4405 (2013).

Geophys. Res. Lett. (1)

L. Kaleschke, X. Tian-Kunze, N. Maaß, M. Mäkynen, and M. Drusch, “Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period,” Geophys. Res. Lett. 39, L05501 (2012).
[Crossref]

J. Raman Spectrosc. (1)

W. A. England, S. N. Jenny, and D. A. Greenhalgh, “Chromium oxide film thickness measurements using spontaneous Raman scattering,” J. Raman Spectrosc. 15, 156–159 (1984).
[Crossref]

Laser Phys. (1)

M. Becucci, S. Cavalieri, R. Eramo, L. Fini, and M. Materazzi, “Raman spectroscopy for water temperature sensing,” Laser Phys. 9, 422–425 (1999).

Opt. Lett. (1)

Opt. Spectrosc. (1)

S. M. Pershin and A. F. Bunkin, “A jump in the position and width of the Raman band envelope of O–H valence vibrations upon phase transitions of the first and second kinds in water,” Opt. Spectrosc. 85, 190–193 (1998).

Phys. Wave Phenom. (2)

S. M. Pershin, A. F. Bunkin, V. K. Klinkov, V. N. Lednev, D. Lushnikov, E. G. Morozov, and R. N. Yul’metov, “Remote sensing of Arctic fjords by Raman Lidar: heat transfer screening by layer of glacier’s relict water,” Phys. Wave Phenom. 20, 212–222 (2012).

A. F. Bunkin and S. M. Pershin, “Observation of rotational resonances of ortho and para spin isomers of the H2O molecule in hexagonal ice using four-photon laser spectroscopy,” Phys. Wave Phenom. 18, 237–239 (2010).

Polar Record (1)

K. J. Campbell and A. S. Orange, “A continuous profile of sea ice and freshwater ice thickness by impulse radar,” Polar Record 17, 31–41 (1974).

Polar Research (1)

K. V. Hoyland, “Ice thickness, growth and salinity in Van Mijenfjorden, Svalbard, Norway,” Polar Research 28, 339–352 (2009).

Proc. SPIE (1)

S. M. Pershin, A. N. Lyash, V. S. Makarov, K. Hamal, I. Prochazka, and B. Sopko, “Multilayer cloud monitoring by micro-Joule lidar based on photon counting receiver and diode laser,” Proc. SPIE 7355, 73550S (2009).

Quantum Electron. (1)

S. M. Pershin, A. F. Bunkin, and V. A. Luk’yanchenko, “Evolution of the spectral component of ice in the OH band of water at temperatures from 13 to 99°C,” Quantum Electron. 40, 1146–1148 (2011).
[Crossref]

Spectroch. Acta A (1)

F. Rulla, A. Vegas, A. Sansano, and P. Sobron, “Analysis of Arctic ices by remote Raman spectroscopy,” Spectroch. Acta A 80, 148–155 (2011).

Vibrational Spectroscopy (1)

A. O. Kivioja, A. S. Jääskeläinena, V. Ahteeb, and T. Vuorinen, “Thickness measurement of thin polymer films by total internal reflection Raman and attenuated total reflection infrared spectroscopy,” Vibrational Spectroscopy 61, 1–9 (2012).
[Crossref]

Other (6)

C. Haas and P. Jochmann, “Continuous EM and ULS thickness profiling in support of ice force measurements,” in Proceedings of the 17th International Conference on Port and Ocean Engineering under Arctic Conditions (Norwegian University of Science and Technology, 2003).

O. T. Gudmestad, A. I. Alhimenko, S. Løset, K. N. Shkhinek, A. Tørum, and A. Jensen, “Engineering aspects related to Arctic offshore developments,” in Student’s Book for Institutes of Higher Education (LAN, 2007).

C. Haas and M. Druckenmiller, Ice Thickness and Roughness Measurements, Field Techniques for Sea-Ice Research, H. Eicken, ed. (University of Alaska, 2009).

P. Wadhams, “Sea ice thickness changes and their relation to climate,” in The Polar Oceans and Their Role in Shaping the Global Environment, O. M. Johannessen, R. D. Muench, and J. E. Overland, eds. (American Geophysical Union, 1994).

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, 1985).

A. F. Bunkin and K. I. Voliak, Laser Remote Sensing of the Ocean: Methods and Applications (Wiley, 2001), p. 256.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Compact Raman LIDAR system developed in GPI RAS.
Fig. 2.
Fig. 2. Experiment setup for transparent materials thickness measurements by Raman scattering. (The detailed description of the LIDAR is given in the text.)
Fig. 3.
Fig. 3. Raman spectra of PMMA (cyan), ice (light blue), and water (blue). A detailed view of OH- and CH-stretching bands are presented in the inset.
Fig. 4.
Fig. 4. Raman scattering for PMMA thickness measurements: (a) the detailed spectrum of CH-stretching vibrations for laser beam waist located in PMMA brick; (b) Raman spectra (z–x cross section) at different lens-to-sample positions (y coordinate) for PMMA sample in distilled water; (c) the detailed spectrum of OH-stretching vibrations for laser beam waist located in water.
Fig. 5.
Fig. 5. Signals for PMMA brick thickness measurements: (a) elastic scattering; (b) Raman scattering.
Fig. 6.
Fig. 6. Water temperature estimation by Raman OH-band profile measurements (see text for details): (a) OH-band profiles for seawater sample at 3 and 81°C; (b) two-color technique metric R = B / A for temperature measurements, where A and B are left and right arms of changing OH-band profile; (c) peak fitting technique metric R = [ ( H B / W B ) / ( H A / W A ) ] , where H and W are high and full width at half-maximum for corresponding peaks; (d) weighting technique metric R = x c , where x c is a mass center of the OH-band profile.
Fig. 7.
Fig. 7. Ice thickness measurements by elastic and Raman scattering: (a) the detailed Raman OH-band profiles for ice and water; (b) elastic signal (black squares, log scale) and Raman OH-band centers (blue rounds) as a function of lens-to-sample distance.

Metrics