Abstract

A spectrometer based on pulsed UV laser-induced breakdown spectroscopy (LIBS) and a highly sensitive intensified charged coupled device camera was developed to determine the carcinogenic substances like fluorine in various brands of cigarettes available commercially. In order to achieve the high sensitivity required for the determination of trace amounts of fluoride in cigarettes and eventually the best limit of detection, the experimental parameters (influence of incident laser energy on LIBS signal intensity and time response of plasma emission) were optimized. In addition, the plasma parameters like electron temperature and electron density were evaluated using Boltzman’s plot for cigarette tobacco for the first time. To the best of our knowledge, LIBS has never been applied to determine the fluorine concentration in cigarettes. Along with the detection of fluorine, other trace metals like Ba, Ca, Ni, Cu, and Na were also detected in cigarettes. For determination of the concentration of fluorine, calibration curve was drawn by preparing standard samples in various fluoride concentrations in tobacco matrix. The concentration of fluorine in different cigarette tobacco samples was 234, 317, 341, and 360 ppm respectively, which is considered to be much higher than the safe permissible limits. The limit of detection of our LIBS spectrometer was 14 ppm for fluorine.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Detection of carcinogenic chromium in synthetic hair dyes using laser induced breakdown spectroscopy

M. A. Gondal, Y. W. Maganda, M. A. Dastageer, F. F. Al Adel, A. A. Naqvi, and T. F. Qahtan
Appl. Opt. 53(8) 1636-1643 (2014)

Optimized laser-induced breakdown spectroscopy for the determination of high toxic lead in edible colors

I. Rehan, M. Z. Khan, K. Rehan, S. U. Abrar, Z. Farooq, S. Sultana, N. Us Saqib, and H. Anwar
Appl. Opt. 57(21) 6033-6039 (2018)

Determination of toxic and essential metals in rock and sea salts using pulsed nanosecond laser-induced breakdown spectroscopy

I. Rehan, M. Zubair Khan, K. Rehan, A. Mateen, M. Aamar Farooque, S. Sultana, and Z. Farooq
Appl. Opt. 57(2) 295-301 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. A. Perfetti and A. Rodgman, “The complexity of tobacco and tobacco smoke,” Contrib. Tob. Res. 24, 215–218 (2011).
  2. A. L. H. Müller, C. C. Müller, F. G. Antes, J. S. Barin, V. L. Dressler, E. M. M. Flores, and E. I. Müller, “Determination of bromide, chloride, and fluoride in cigarette tobacco by ion chromatography after microwave-induced combustion,” Anal. Lett. 45, 1004–1015 (2012).
    [Crossref]
  3. A. R. Al-shammery, E. E. Guile, and M. El Backly, “The prevalence of dental fluorosis in Saudi Arabia,” Saudi Dental J. 9, 11–14 (1997).
  4. A. A. Zahvoronkov and L. S. Strochkova, “Fluorosis: geographical pathology and some experimental findings,” Fluoride 14, 182–191 (1981).
  5. R. D. Kaul and A. K. Susheela, “Evidence of muscle fiber degeneration in rabbits treated with sodium fluoride,” Fluoride 7, 177–181 (1974).
  6. N. J. Chinoy and E. Sequeira, “Reversible fluoride induced fertility impairment in male mice,” Fluoride 25, 71–76 (1992).
  7. J. Marinus, G. L. Moseley, F. Birklein, R. Baron, C. Maihöfner, W. S. Kingery, and J. J. van Hilten, “Clinical features and pathophysiology of complex regional pain syndrome,” Lancet Neurol. 10, 637–648 (2011).
  8. C. A. Tylenda, D. Jones, L. Ingerman, G. Sage, and L. Chappell, “Toxicological profile for fluorides, hydrogen fluoride, and fluorine,” Fluoride 422, 16–20 (2003).
  9. T. Attin, A. M. Lennon, M. Yakin, K. Becker, W. Buchalla, R. Attin, and A. Wiegand, “Deposition of fluoride on enamel surfaces released from varnishes is limited to vicinity of fluoridation site,” Clin. Oral Invest. 11, 83–88 (2007).
  10. Q. Wang, A. Makishima, and E. Nakamura, “Determination of fluorine and chlorine by pyrohydrolysis and ion chromatography: comparison with alkaline fusion digestion and ion chromatography,” Geostand. Geoanal. Res. 34, 175–183 (2010).
  11. P. Blatn and F. Kvasni, “Determination of fluoride in feed mixtures by capillary isotachophoresis,” J. Chromatogr. A 670, 223–228 (1994).
    [Crossref]
  12. N. Ozbek and S. Akman, “Method development for the determination of fluorine in toothpaste via molecular absorption of aluminum mono fluoride using a high-resolution continuum source nitrous oxide/acetylene flame atomic absorption spectrophotometer,” Talanta 94, 246–250 (2012).
    [Crossref]
  13. H. Gleisner, B. Welz, and J. W. Einax, “Optimization of fluorine determination via the molecular absorption of gallium mono-fluoride in a graphite furnace using a high-resolution continuum source spectrometer,” Spectrochim. Acta, Part B 65, 864–869 (2010).
    [Crossref]
  14. H. Gleisner, J. W. Einax, S. Morés, B. Welz, and E. Carasek, “A fast and accurate method for the determination of total and soluble fluorine in toothpaste using high-resolution graphite furnace molecular absorption spectrometry and its comparison with established techniques,” J. Pharm. Biomed. Anal. 54, 1040–1046 (2011).
    [Crossref]
  15. N. Ozbek and S. Akman, “Method development for the determination of fluorine in water samples via molecular absorption of CaF using a high-resolution continuum source electrothermal atomic absorption spectrophotometer,” Talanta 5006, 2–5 (2012).
  16. T. Frömel, S. Münster-müller, and P. T. P. Knepper, “Fluorine analysis using molecular absorption spectroscopy,” (Institute for Analytical Research, Fresenius Polytechnic, 2014).
  17. K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, and L. E. Foster, “Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50, 222–233 (1996).
    [Crossref]
  18. F. Colao, R. Fantoni, V. Lazic, A. Morone, A. Santagata, and A. Giardini, “LIBS used as a diagnostic tool during the laser cleaning of ancient marble from mediterranean areas,” Appl. Phys. A 79, 213–219 (2004).
    [Crossref]
  19. O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).
    [Crossref]
  20. D. A. Cremers and L. J. Radziemski, Handbook of Laser Induced Breakdown Spectroscopy (Wiley, 1997), pp. 29–68.
  21. M. A. Gondal and T. Hussain, “Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy,” Talanta 71, 73–80 (2007).
    [Crossref]
  22. S. S. Harilal, C. V. Bindhu, and V. P. N. Nampoori, “Temperature in a laser-produced plasma from YBa2 Cu3O7,” Supercond. Sci. Technol. 11, 449–457 (1998).
    [Crossref]
  23. R. H. Huddlestone and L. S. Leonaed, “Plasma diagnostic techniques,” J. Plasma Phys. 1, 156 (1965).
  24. V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana 74, 983–993 (2010).
    [Crossref]
  25. R. C. Chinni, D. A. Cremers, L. J. Radziemski, M. Bostian, and C. Navarro-Northrup, “Detection of uranium using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 63, 1238–1250 (2009).
    [Crossref]
  26. U.S. Department of Commerce, “NIST Physical Reference Data.”
  27. A. E. Hussein, P. K. Diwakar, S. S. Harilal, and A. Hassanein, “The role of laser wavelength on plasma generation and expansion of ablation plumes in air,” J. Appl. Phys. 113, 143305 (2013).
    [Crossref]
  28. B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta, Part B 56, 987–1002 (2001).
    [Crossref]
  29. A. L. Osterheld, “Principles of plasma spectroscopy,” Nucl. Fusion 38, 1255 (1998).
    [Crossref]
  30. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006), Chap. 8, pp. 23–65
  31. Y. J. Hong, G. C. Kwon, G. Cho, H. M. Shin, and E. H. Choi, “Measurement of electron temperature and density using stark broadening of the coaxial focused plasma for extreme ultraviolet lithography,” IEEE Trans. Plasma Sci. 38, 1111–1117 (2010).
    [Crossref]
  32. N. Konjević and W. L. Wiese, “Experimental stark widths and shifts for spectral lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 31, 819–927 (2002).
    [Crossref]
  33. M. A. Gondal, Y. W. Maganda, M. A. Dastageer, F. F. Al-Adel, A. A. Naqvi, and T. F. Qahtan, “Development of a laser induced breakdown sensor for detection of carcinogenic chemicals in cosmetic products,” in 10th International Conference on High Capacity Optical Networks and Emerging/Enabling Technologies (IEEE, 2013), pp. 84–87.
  34. M. A. Gondal, Y. W. Maganda, M. A. Dastageer, F. F. Al Adel, A. A. Naqvi, and T. F. Qahtan, “Detection of carcinogenic chromium in synthetic hair dyes using laser induced breakdown spectroscopy,” Appl. Opt. 53, 1636–1643 (2014).
    [Crossref]
  35. M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “The role of various binding materials for trace elemental analysis of powder samples using laser-induced breakdown spectroscopy,” Talanta 72, 642–649 (2007).
    [Crossref]
  36. T. Hussain and M. A. Gondal, “Detection of toxic metals in waste water from dairy products plant using laser induced breakdown spectroscopy,” Bull. Environ. Contam. Toxicol. 80, 561–565 (2008).
    [Crossref]
  37. N. Reinhard, Laser-Induced Breakdown Spectroscopy—Fundamentals and Applications (Springer, 2015).
  38. C. Meenakshi and R. C. Maheshwari, “Fluoride in drinking water and its removal,” J. Hazard. Mater. 137, 456–463 (2006).
    [Crossref]
  39. S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys. 82, 2140–2146 (1997).
    [Crossref]
  40. M. A. Gondal, Y. W. Maganda, M. A. Dastageer, F. F. Al Adel, A. A. Naqvi, and T. F. Qahtan, “Detection of the level of fluoride in the commercially available toothpaste using laser induced breakdown spectroscopy with the marker atomic transition line of neutral fluorine at 731.1  nm,” Opt. Laser Technol. 57, 32–38 (2014).
    [Crossref]

2014 (2)

M. A. Gondal, Y. W. Maganda, M. A. Dastageer, F. F. Al Adel, A. A. Naqvi, and T. F. Qahtan, “Detection of carcinogenic chromium in synthetic hair dyes using laser induced breakdown spectroscopy,” Appl. Opt. 53, 1636–1643 (2014).
[Crossref]

M. A. Gondal, Y. W. Maganda, M. A. Dastageer, F. F. Al Adel, A. A. Naqvi, and T. F. Qahtan, “Detection of the level of fluoride in the commercially available toothpaste using laser induced breakdown spectroscopy with the marker atomic transition line of neutral fluorine at 731.1  nm,” Opt. Laser Technol. 57, 32–38 (2014).
[Crossref]

2013 (1)

A. E. Hussein, P. K. Diwakar, S. S. Harilal, and A. Hassanein, “The role of laser wavelength on plasma generation and expansion of ablation plumes in air,” J. Appl. Phys. 113, 143305 (2013).
[Crossref]

2012 (3)

A. L. H. Müller, C. C. Müller, F. G. Antes, J. S. Barin, V. L. Dressler, E. M. M. Flores, and E. I. Müller, “Determination of bromide, chloride, and fluoride in cigarette tobacco by ion chromatography after microwave-induced combustion,” Anal. Lett. 45, 1004–1015 (2012).
[Crossref]

N. Ozbek and S. Akman, “Method development for the determination of fluorine in toothpaste via molecular absorption of aluminum mono fluoride using a high-resolution continuum source nitrous oxide/acetylene flame atomic absorption spectrophotometer,” Talanta 94, 246–250 (2012).
[Crossref]

N. Ozbek and S. Akman, “Method development for the determination of fluorine in water samples via molecular absorption of CaF using a high-resolution continuum source electrothermal atomic absorption spectrophotometer,” Talanta 5006, 2–5 (2012).

2011 (3)

H. Gleisner, J. W. Einax, S. Morés, B. Welz, and E. Carasek, “A fast and accurate method for the determination of total and soluble fluorine in toothpaste using high-resolution graphite furnace molecular absorption spectrometry and its comparison with established techniques,” J. Pharm. Biomed. Anal. 54, 1040–1046 (2011).
[Crossref]

T. A. Perfetti and A. Rodgman, “The complexity of tobacco and tobacco smoke,” Contrib. Tob. Res. 24, 215–218 (2011).

J. Marinus, G. L. Moseley, F. Birklein, R. Baron, C. Maihöfner, W. S. Kingery, and J. J. van Hilten, “Clinical features and pathophysiology of complex regional pain syndrome,” Lancet Neurol. 10, 637–648 (2011).

2010 (4)

H. Gleisner, B. Welz, and J. W. Einax, “Optimization of fluorine determination via the molecular absorption of gallium mono-fluoride in a graphite furnace using a high-resolution continuum source spectrometer,” Spectrochim. Acta, Part B 65, 864–869 (2010).
[Crossref]

Q. Wang, A. Makishima, and E. Nakamura, “Determination of fluorine and chlorine by pyrohydrolysis and ion chromatography: comparison with alkaline fusion digestion and ion chromatography,” Geostand. Geoanal. Res. 34, 175–183 (2010).

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana 74, 983–993 (2010).
[Crossref]

Y. J. Hong, G. C. Kwon, G. Cho, H. M. Shin, and E. H. Choi, “Measurement of electron temperature and density using stark broadening of the coaxial focused plasma for extreme ultraviolet lithography,” IEEE Trans. Plasma Sci. 38, 1111–1117 (2010).
[Crossref]

2009 (1)

R. C. Chinni, D. A. Cremers, L. J. Radziemski, M. Bostian, and C. Navarro-Northrup, “Detection of uranium using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 63, 1238–1250 (2009).
[Crossref]

2008 (1)

T. Hussain and M. A. Gondal, “Detection of toxic metals in waste water from dairy products plant using laser induced breakdown spectroscopy,” Bull. Environ. Contam. Toxicol. 80, 561–565 (2008).
[Crossref]

2007 (3)

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “The role of various binding materials for trace elemental analysis of powder samples using laser-induced breakdown spectroscopy,” Talanta 72, 642–649 (2007).
[Crossref]

M. A. Gondal and T. Hussain, “Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy,” Talanta 71, 73–80 (2007).
[Crossref]

T. Attin, A. M. Lennon, M. Yakin, K. Becker, W. Buchalla, R. Attin, and A. Wiegand, “Deposition of fluoride on enamel surfaces released from varnishes is limited to vicinity of fluoridation site,” Clin. Oral Invest. 11, 83–88 (2007).

2006 (1)

C. Meenakshi and R. C. Maheshwari, “Fluoride in drinking water and its removal,” J. Hazard. Mater. 137, 456–463 (2006).
[Crossref]

2004 (1)

F. Colao, R. Fantoni, V. Lazic, A. Morone, A. Santagata, and A. Giardini, “LIBS used as a diagnostic tool during the laser cleaning of ancient marble from mediterranean areas,” Appl. Phys. A 79, 213–219 (2004).
[Crossref]

2003 (1)

C. A. Tylenda, D. Jones, L. Ingerman, G. Sage, and L. Chappell, “Toxicological profile for fluorides, hydrogen fluoride, and fluorine,” Fluoride 422, 16–20 (2003).

2002 (1)

N. Konjević and W. L. Wiese, “Experimental stark widths and shifts for spectral lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 31, 819–927 (2002).
[Crossref]

2001 (1)

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta, Part B 56, 987–1002 (2001).
[Crossref]

1999 (1)

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).
[Crossref]

1998 (2)

S. S. Harilal, C. V. Bindhu, and V. P. N. Nampoori, “Temperature in a laser-produced plasma from YBa2 Cu3O7,” Supercond. Sci. Technol. 11, 449–457 (1998).
[Crossref]

A. L. Osterheld, “Principles of plasma spectroscopy,” Nucl. Fusion 38, 1255 (1998).
[Crossref]

1997 (2)

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys. 82, 2140–2146 (1997).
[Crossref]

A. R. Al-shammery, E. E. Guile, and M. El Backly, “The prevalence of dental fluorosis in Saudi Arabia,” Saudi Dental J. 9, 11–14 (1997).

1996 (1)

K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, and L. E. Foster, “Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50, 222–233 (1996).
[Crossref]

1994 (1)

P. Blatn and F. Kvasni, “Determination of fluoride in feed mixtures by capillary isotachophoresis,” J. Chromatogr. A 670, 223–228 (1994).
[Crossref]

1992 (1)

N. J. Chinoy and E. Sequeira, “Reversible fluoride induced fertility impairment in male mice,” Fluoride 25, 71–76 (1992).

1981 (1)

A. A. Zahvoronkov and L. S. Strochkova, “Fluorosis: geographical pathology and some experimental findings,” Fluoride 14, 182–191 (1981).

1974 (1)

R. D. Kaul and A. K. Susheela, “Evidence of muscle fiber degeneration in rabbits treated with sodium fluoride,” Fluoride 7, 177–181 (1974).

1965 (1)

R. H. Huddlestone and L. S. Leonaed, “Plasma diagnostic techniques,” J. Plasma Phys. 1, 156 (1965).

Akman, S.

N. Ozbek and S. Akman, “Method development for the determination of fluorine in toothpaste via molecular absorption of aluminum mono fluoride using a high-resolution continuum source nitrous oxide/acetylene flame atomic absorption spectrophotometer,” Talanta 94, 246–250 (2012).
[Crossref]

N. Ozbek and S. Akman, “Method development for the determination of fluorine in water samples via molecular absorption of CaF using a high-resolution continuum source electrothermal atomic absorption spectrophotometer,” Talanta 5006, 2–5 (2012).

Al Adel, F. F.

M. A. Gondal, Y. W. Maganda, M. A. Dastageer, F. F. Al Adel, A. A. Naqvi, and T. F. Qahtan, “Detection of carcinogenic chromium in synthetic hair dyes using laser induced breakdown spectroscopy,” Appl. Opt. 53, 1636–1643 (2014).
[Crossref]

M. A. Gondal, Y. W. Maganda, M. A. Dastageer, F. F. Al Adel, A. A. Naqvi, and T. F. Qahtan, “Detection of the level of fluoride in the commercially available toothpaste using laser induced breakdown spectroscopy with the marker atomic transition line of neutral fluorine at 731.1  nm,” Opt. Laser Technol. 57, 32–38 (2014).
[Crossref]

Al-Adel, F. F.

M. A. Gondal, Y. W. Maganda, M. A. Dastageer, F. F. Al-Adel, A. A. Naqvi, and T. F. Qahtan, “Development of a laser induced breakdown sensor for detection of carcinogenic chemicals in cosmetic products,” in 10th International Conference on High Capacity Optical Networks and Emerging/Enabling Technologies (IEEE, 2013), pp. 84–87.

Al-shammery, A. R.

A. R. Al-shammery, E. E. Guile, and M. El Backly, “The prevalence of dental fluorosis in Saudi Arabia,” Saudi Dental J. 9, 11–14 (1997).

Alti, K.

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana 74, 983–993 (2010).
[Crossref]

Antes, F. G.

A. L. H. Müller, C. C. Müller, F. G. Antes, J. S. Barin, V. L. Dressler, E. M. M. Flores, and E. I. Müller, “Determination of bromide, chloride, and fluoride in cigarette tobacco by ion chromatography after microwave-induced combustion,” Anal. Lett. 45, 1004–1015 (2012).
[Crossref]

Attin, R.

T. Attin, A. M. Lennon, M. Yakin, K. Becker, W. Buchalla, R. Attin, and A. Wiegand, “Deposition of fluoride on enamel surfaces released from varnishes is limited to vicinity of fluoridation site,” Clin. Oral Invest. 11, 83–88 (2007).

Attin, T.

T. Attin, A. M. Lennon, M. Yakin, K. Becker, W. Buchalla, R. Attin, and A. Wiegand, “Deposition of fluoride on enamel surfaces released from varnishes is limited to vicinity of fluoridation site,” Clin. Oral Invest. 11, 83–88 (2007).

Baig, M. A.

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “The role of various binding materials for trace elemental analysis of powder samples using laser-induced breakdown spectroscopy,” Talanta 72, 642–649 (2007).
[Crossref]

Barin, J. S.

A. L. H. Müller, C. C. Müller, F. G. Antes, J. S. Barin, V. L. Dressler, E. M. M. Flores, and E. I. Müller, “Determination of bromide, chloride, and fluoride in cigarette tobacco by ion chromatography after microwave-induced combustion,” Anal. Lett. 45, 1004–1015 (2012).
[Crossref]

Baron, R.

J. Marinus, G. L. Moseley, F. Birklein, R. Baron, C. Maihöfner, W. S. Kingery, and J. J. van Hilten, “Clinical features and pathophysiology of complex regional pain syndrome,” Lancet Neurol. 10, 637–648 (2011).

Barthelemy, O.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta, Part B 56, 987–1002 (2001).
[Crossref]

Becker, K.

T. Attin, A. M. Lennon, M. Yakin, K. Becker, W. Buchalla, R. Attin, and A. Wiegand, “Deposition of fluoride on enamel surfaces released from varnishes is limited to vicinity of fluoridation site,” Clin. Oral Invest. 11, 83–88 (2007).

Beddows, D. C. S.

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).
[Crossref]

Bindhu, C. V.

S. S. Harilal, C. V. Bindhu, and V. P. N. Nampoori, “Temperature in a laser-produced plasma from YBa2 Cu3O7,” Supercond. Sci. Technol. 11, 449–457 (1998).
[Crossref]

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys. 82, 2140–2146 (1997).
[Crossref]

Birklein, F.

J. Marinus, G. L. Moseley, F. Birklein, R. Baron, C. Maihöfner, W. S. Kingery, and J. J. van Hilten, “Clinical features and pathophysiology of complex regional pain syndrome,” Lancet Neurol. 10, 637–648 (2011).

Blatn, P.

P. Blatn and F. Kvasni, “Determination of fluoride in feed mixtures by capillary isotachophoresis,” J. Chromatogr. A 670, 223–228 (1994).
[Crossref]

Bostian, M.

R. C. Chinni, D. A. Cremers, L. J. Radziemski, M. Bostian, and C. Navarro-Northrup, “Detection of uranium using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 63, 1238–1250 (2009).
[Crossref]

Buchalla, W.

T. Attin, A. M. Lennon, M. Yakin, K. Becker, W. Buchalla, R. Attin, and A. Wiegand, “Deposition of fluoride on enamel surfaces released from varnishes is limited to vicinity of fluoridation site,” Clin. Oral Invest. 11, 83–88 (2007).

Carasek, E.

H. Gleisner, J. W. Einax, S. Morés, B. Welz, and E. Carasek, “A fast and accurate method for the determination of total and soluble fluorine in toothpaste using high-resolution graphite furnace molecular absorption spectrometry and its comparison with established techniques,” J. Pharm. Biomed. Anal. 54, 1040–1046 (2011).
[Crossref]

Chaker, M.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta, Part B 56, 987–1002 (2001).
[Crossref]

Chappell, L.

C. A. Tylenda, D. Jones, L. Ingerman, G. Sage, and L. Chappell, “Toxicological profile for fluorides, hydrogen fluoride, and fluorine,” Fluoride 422, 16–20 (2003).

Chinni, R. C.

R. C. Chinni, D. A. Cremers, L. J. Radziemski, M. Bostian, and C. Navarro-Northrup, “Detection of uranium using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 63, 1238–1250 (2009).
[Crossref]

Chinoy, N. J.

N. J. Chinoy and E. Sequeira, “Reversible fluoride induced fertility impairment in male mice,” Fluoride 25, 71–76 (1992).

Cho, G.

Y. J. Hong, G. C. Kwon, G. Cho, H. M. Shin, and E. H. Choi, “Measurement of electron temperature and density using stark broadening of the coaxial focused plasma for extreme ultraviolet lithography,” IEEE Trans. Plasma Sci. 38, 1111–1117 (2010).
[Crossref]

Choi, E. H.

Y. J. Hong, G. C. Kwon, G. Cho, H. M. Shin, and E. H. Choi, “Measurement of electron temperature and density using stark broadening of the coaxial focused plasma for extreme ultraviolet lithography,” IEEE Trans. Plasma Sci. 38, 1111–1117 (2010).
[Crossref]

Colao, F.

F. Colao, R. Fantoni, V. Lazic, A. Morone, A. Santagata, and A. Giardini, “LIBS used as a diagnostic tool during the laser cleaning of ancient marble from mediterranean areas,” Appl. Phys. A 79, 213–219 (2004).
[Crossref]

Cremers, D. A.

R. C. Chinni, D. A. Cremers, L. J. Radziemski, M. Bostian, and C. Navarro-Northrup, “Detection of uranium using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 63, 1238–1250 (2009).
[Crossref]

K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, and L. E. Foster, “Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50, 222–233 (1996).
[Crossref]

D. A. Cremers and L. J. Radziemski, Handbook of Laser Induced Breakdown Spectroscopy (Wiley, 1997), pp. 29–68.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006), Chap. 8, pp. 23–65

Dastageer, M. A.

M. A. Gondal, Y. W. Maganda, M. A. Dastageer, F. F. Al Adel, A. A. Naqvi, and T. F. Qahtan, “Detection of carcinogenic chromium in synthetic hair dyes using laser induced breakdown spectroscopy,” Appl. Opt. 53, 1636–1643 (2014).
[Crossref]

M. A. Gondal, Y. W. Maganda, M. A. Dastageer, F. F. Al Adel, A. A. Naqvi, and T. F. Qahtan, “Detection of the level of fluoride in the commercially available toothpaste using laser induced breakdown spectroscopy with the marker atomic transition line of neutral fluorine at 731.1  nm,” Opt. Laser Technol. 57, 32–38 (2014).
[Crossref]

M. A. Gondal, Y. W. Maganda, M. A. Dastageer, F. F. Al-Adel, A. A. Naqvi, and T. F. Qahtan, “Development of a laser induced breakdown sensor for detection of carcinogenic chemicals in cosmetic products,” in 10th International Conference on High Capacity Optical Networks and Emerging/Enabling Technologies (IEEE, 2013), pp. 84–87.

Diwakar, P. K.

A. E. Hussein, P. K. Diwakar, S. S. Harilal, and A. Hassanein, “The role of laser wavelength on plasma generation and expansion of ablation plumes in air,” J. Appl. Phys. 113, 143305 (2013).
[Crossref]

Dressler, V. L.

A. L. H. Müller, C. C. Müller, F. G. Antes, J. S. Barin, V. L. Dressler, E. M. M. Flores, and E. I. Müller, “Determination of bromide, chloride, and fluoride in cigarette tobacco by ion chromatography after microwave-induced combustion,” Anal. Lett. 45, 1004–1015 (2012).
[Crossref]

Einax, J. W.

H. Gleisner, J. W. Einax, S. Morés, B. Welz, and E. Carasek, “A fast and accurate method for the determination of total and soluble fluorine in toothpaste using high-resolution graphite furnace molecular absorption spectrometry and its comparison with established techniques,” J. Pharm. Biomed. Anal. 54, 1040–1046 (2011).
[Crossref]

H. Gleisner, B. Welz, and J. W. Einax, “Optimization of fluorine determination via the molecular absorption of gallium mono-fluoride in a graphite furnace using a high-resolution continuum source spectrometer,” Spectrochim. Acta, Part B 65, 864–869 (2010).
[Crossref]

El Backly, M.

A. R. Al-shammery, E. E. Guile, and M. El Backly, “The prevalence of dental fluorosis in Saudi Arabia,” Saudi Dental J. 9, 11–14 (1997).

Fantoni, R.

F. Colao, R. Fantoni, V. Lazic, A. Morone, A. Santagata, and A. Giardini, “LIBS used as a diagnostic tool during the laser cleaning of ancient marble from mediterranean areas,” Appl. Phys. A 79, 213–219 (2004).
[Crossref]

Ferris, M. J.

K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, and L. E. Foster, “Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50, 222–233 (1996).
[Crossref]

Flores, E. M. M.

A. L. H. Müller, C. C. Müller, F. G. Antes, J. S. Barin, V. L. Dressler, E. M. M. Flores, and E. I. Müller, “Determination of bromide, chloride, and fluoride in cigarette tobacco by ion chromatography after microwave-induced combustion,” Anal. Lett. 45, 1004–1015 (2012).
[Crossref]

Foster, L. E.

K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, and L. E. Foster, “Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50, 222–233 (1996).
[Crossref]

Frömel, T.

T. Frömel, S. Münster-müller, and P. T. P. Knepper, “Fluorine analysis using molecular absorption spectroscopy,” (Institute for Analytical Research, Fresenius Polytechnic, 2014).

Giardini, A.

F. Colao, R. Fantoni, V. Lazic, A. Morone, A. Santagata, and A. Giardini, “LIBS used as a diagnostic tool during the laser cleaning of ancient marble from mediterranean areas,” Appl. Phys. A 79, 213–219 (2004).
[Crossref]

Gleisner, H.

H. Gleisner, J. W. Einax, S. Morés, B. Welz, and E. Carasek, “A fast and accurate method for the determination of total and soluble fluorine in toothpaste using high-resolution graphite furnace molecular absorption spectrometry and its comparison with established techniques,” J. Pharm. Biomed. Anal. 54, 1040–1046 (2011).
[Crossref]

H. Gleisner, B. Welz, and J. W. Einax, “Optimization of fluorine determination via the molecular absorption of gallium mono-fluoride in a graphite furnace using a high-resolution continuum source spectrometer,” Spectrochim. Acta, Part B 65, 864–869 (2010).
[Crossref]

Gondal, M. A.

M. A. Gondal, Y. W. Maganda, M. A. Dastageer, F. F. Al Adel, A. A. Naqvi, and T. F. Qahtan, “Detection of carcinogenic chromium in synthetic hair dyes using laser induced breakdown spectroscopy,” Appl. Opt. 53, 1636–1643 (2014).
[Crossref]

M. A. Gondal, Y. W. Maganda, M. A. Dastageer, F. F. Al Adel, A. A. Naqvi, and T. F. Qahtan, “Detection of the level of fluoride in the commercially available toothpaste using laser induced breakdown spectroscopy with the marker atomic transition line of neutral fluorine at 731.1  nm,” Opt. Laser Technol. 57, 32–38 (2014).
[Crossref]

T. Hussain and M. A. Gondal, “Detection of toxic metals in waste water from dairy products plant using laser induced breakdown spectroscopy,” Bull. Environ. Contam. Toxicol. 80, 561–565 (2008).
[Crossref]

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “The role of various binding materials for trace elemental analysis of powder samples using laser-induced breakdown spectroscopy,” Talanta 72, 642–649 (2007).
[Crossref]

M. A. Gondal and T. Hussain, “Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy,” Talanta 71, 73–80 (2007).
[Crossref]

M. A. Gondal, Y. W. Maganda, M. A. Dastageer, F. F. Al-Adel, A. A. Naqvi, and T. F. Qahtan, “Development of a laser induced breakdown sensor for detection of carcinogenic chemicals in cosmetic products,” in 10th International Conference on High Capacity Optical Networks and Emerging/Enabling Technologies (IEEE, 2013), pp. 84–87.

Guile, E. E.

A. R. Al-shammery, E. E. Guile, and M. El Backly, “The prevalence of dental fluorosis in Saudi Arabia,” Saudi Dental J. 9, 11–14 (1997).

Gupta, G. P.

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana 74, 983–993 (2010).
[Crossref]

Harilal, S. S.

A. E. Hussein, P. K. Diwakar, S. S. Harilal, and A. Hassanein, “The role of laser wavelength on plasma generation and expansion of ablation plumes in air,” J. Appl. Phys. 113, 143305 (2013).
[Crossref]

S. S. Harilal, C. V. Bindhu, and V. P. N. Nampoori, “Temperature in a laser-produced plasma from YBa2 Cu3O7,” Supercond. Sci. Technol. 11, 449–457 (1998).
[Crossref]

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys. 82, 2140–2146 (1997).
[Crossref]

Hassanein, A.

A. E. Hussein, P. K. Diwakar, S. S. Harilal, and A. Hassanein, “The role of laser wavelength on plasma generation and expansion of ablation plumes in air,” J. Appl. Phys. 113, 143305 (2013).
[Crossref]

Hong, Y. J.

Y. J. Hong, G. C. Kwon, G. Cho, H. M. Shin, and E. H. Choi, “Measurement of electron temperature and density using stark broadening of the coaxial focused plasma for extreme ultraviolet lithography,” IEEE Trans. Plasma Sci. 38, 1111–1117 (2010).
[Crossref]

Huddlestone, R. H.

R. H. Huddlestone and L. S. Leonaed, “Plasma diagnostic techniques,” J. Plasma Phys. 1, 156 (1965).

Hussain, T.

T. Hussain and M. A. Gondal, “Detection of toxic metals in waste water from dairy products plant using laser induced breakdown spectroscopy,” Bull. Environ. Contam. Toxicol. 80, 561–565 (2008).
[Crossref]

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “The role of various binding materials for trace elemental analysis of powder samples using laser-induced breakdown spectroscopy,” Talanta 72, 642–649 (2007).
[Crossref]

M. A. Gondal and T. Hussain, “Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy,” Talanta 71, 73–80 (2007).
[Crossref]

Hussein, A. E.

A. E. Hussein, P. K. Diwakar, S. S. Harilal, and A. Hassanein, “The role of laser wavelength on plasma generation and expansion of ablation plumes in air,” J. Appl. Phys. 113, 143305 (2013).
[Crossref]

Ingerman, L.

C. A. Tylenda, D. Jones, L. Ingerman, G. Sage, and L. Chappell, “Toxicological profile for fluorides, hydrogen fluoride, and fluorine,” Fluoride 422, 16–20 (2003).

Issac, R. C.

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys. 82, 2140–2146 (1997).
[Crossref]

Johnston, T. W.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta, Part B 56, 987–1002 (2001).
[Crossref]

Jones, D.

C. A. Tylenda, D. Jones, L. Ingerman, G. Sage, and L. Chappell, “Toxicological profile for fluorides, hydrogen fluoride, and fluorine,” Fluoride 422, 16–20 (2003).

Kaiser, J.

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).
[Crossref]

Kartha, V. B.

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana 74, 983–993 (2010).
[Crossref]

Kaul, R. D.

R. D. Kaul and A. K. Susheela, “Evidence of muscle fiber degeneration in rabbits treated with sodium fluoride,” Fluoride 7, 177–181 (1974).

Kingery, W. S.

J. Marinus, G. L. Moseley, F. Birklein, R. Baron, C. Maihöfner, W. S. Kingery, and J. J. van Hilten, “Clinical features and pathophysiology of complex regional pain syndrome,” Lancet Neurol. 10, 637–648 (2011).

Knepper, P. T. P.

T. Frömel, S. Münster-müller, and P. T. P. Knepper, “Fluorine analysis using molecular absorption spectroscopy,” (Institute for Analytical Research, Fresenius Polytechnic, 2014).

Konjevic, N.

N. Konjević and W. L. Wiese, “Experimental stark widths and shifts for spectral lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 31, 819–927 (2002).
[Crossref]

Kvasni, F.

P. Blatn and F. Kvasni, “Determination of fluoride in feed mixtures by capillary isotachophoresis,” J. Chromatogr. A 670, 223–228 (1994).
[Crossref]

Kwon, G. C.

Y. J. Hong, G. C. Kwon, G. Cho, H. M. Shin, and E. H. Choi, “Measurement of electron temperature and density using stark broadening of the coaxial focused plasma for extreme ultraviolet lithography,” IEEE Trans. Plasma Sci. 38, 1111–1117 (2010).
[Crossref]

Laville, S.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta, Part B 56, 987–1002 (2001).
[Crossref]

Lazic, V.

F. Colao, R. Fantoni, V. Lazic, A. Morone, A. Santagata, and A. Giardini, “LIBS used as a diagnostic tool during the laser cleaning of ancient marble from mediterranean areas,” Appl. Phys. A 79, 213–219 (2004).
[Crossref]

Le Drogoff, B.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta, Part B 56, 987–1002 (2001).
[Crossref]

Lennon, A. M.

T. Attin, A. M. Lennon, M. Yakin, K. Becker, W. Buchalla, R. Attin, and A. Wiegand, “Deposition of fluoride on enamel surfaces released from varnishes is limited to vicinity of fluoridation site,” Clin. Oral Invest. 11, 83–88 (2007).

Leonaed, L. S.

R. H. Huddlestone and L. S. Leonaed, “Plasma diagnostic techniques,” J. Plasma Phys. 1, 156 (1965).

Liska, M.

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).
[Crossref]

Maganda, Y. W.

M. A. Gondal, Y. W. Maganda, M. A. Dastageer, F. F. Al Adel, A. A. Naqvi, and T. F. Qahtan, “Detection of carcinogenic chromium in synthetic hair dyes using laser induced breakdown spectroscopy,” Appl. Opt. 53, 1636–1643 (2014).
[Crossref]

M. A. Gondal, Y. W. Maganda, M. A. Dastageer, F. F. Al Adel, A. A. Naqvi, and T. F. Qahtan, “Detection of the level of fluoride in the commercially available toothpaste using laser induced breakdown spectroscopy with the marker atomic transition line of neutral fluorine at 731.1  nm,” Opt. Laser Technol. 57, 32–38 (2014).
[Crossref]

M. A. Gondal, Y. W. Maganda, M. A. Dastageer, F. F. Al-Adel, A. A. Naqvi, and T. F. Qahtan, “Development of a laser induced breakdown sensor for detection of carcinogenic chemicals in cosmetic products,” in 10th International Conference on High Capacity Optical Networks and Emerging/Enabling Technologies (IEEE, 2013), pp. 84–87.

Maheshwari, R. C.

C. Meenakshi and R. C. Maheshwari, “Fluoride in drinking water and its removal,” J. Hazard. Mater. 137, 456–463 (2006).
[Crossref]

Maihöfner, C.

J. Marinus, G. L. Moseley, F. Birklein, R. Baron, C. Maihöfner, W. S. Kingery, and J. J. van Hilten, “Clinical features and pathophysiology of complex regional pain syndrome,” Lancet Neurol. 10, 637–648 (2011).

Makishima, A.

Q. Wang, A. Makishima, and E. Nakamura, “Determination of fluorine and chlorine by pyrohydrolysis and ion chromatography: comparison with alkaline fusion digestion and ion chromatography,” Geostand. Geoanal. Res. 34, 175–183 (2010).

Margot, J.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta, Part B 56, 987–1002 (2001).
[Crossref]

Marinus, J.

J. Marinus, G. L. Moseley, F. Birklein, R. Baron, C. Maihöfner, W. S. Kingery, and J. J. van Hilten, “Clinical features and pathophysiology of complex regional pain syndrome,” Lancet Neurol. 10, 637–648 (2011).

Meenakshi, C.

C. Meenakshi and R. C. Maheshwari, “Fluoride in drinking water and its removal,” J. Hazard. Mater. 137, 456–463 (2006).
[Crossref]

Morés, S.

H. Gleisner, J. W. Einax, S. Morés, B. Welz, and E. Carasek, “A fast and accurate method for the determination of total and soluble fluorine in toothpaste using high-resolution graphite furnace molecular absorption spectrometry and its comparison with established techniques,” J. Pharm. Biomed. Anal. 54, 1040–1046 (2011).
[Crossref]

Morone, A.

F. Colao, R. Fantoni, V. Lazic, A. Morone, A. Santagata, and A. Giardini, “LIBS used as a diagnostic tool during the laser cleaning of ancient marble from mediterranean areas,” Appl. Phys. A 79, 213–219 (2004).
[Crossref]

Morris, G. W.

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).
[Crossref]

Moseley, G. L.

J. Marinus, G. L. Moseley, F. Birklein, R. Baron, C. Maihöfner, W. S. Kingery, and J. J. van Hilten, “Clinical features and pathophysiology of complex regional pain syndrome,” Lancet Neurol. 10, 637–648 (2011).

Müller, A. L. H.

A. L. H. Müller, C. C. Müller, F. G. Antes, J. S. Barin, V. L. Dressler, E. M. M. Flores, and E. I. Müller, “Determination of bromide, chloride, and fluoride in cigarette tobacco by ion chromatography after microwave-induced combustion,” Anal. Lett. 45, 1004–1015 (2012).
[Crossref]

Müller, C. C.

A. L. H. Müller, C. C. Müller, F. G. Antes, J. S. Barin, V. L. Dressler, E. M. M. Flores, and E. I. Müller, “Determination of bromide, chloride, and fluoride in cigarette tobacco by ion chromatography after microwave-induced combustion,” Anal. Lett. 45, 1004–1015 (2012).
[Crossref]

Müller, E. I.

A. L. H. Müller, C. C. Müller, F. G. Antes, J. S. Barin, V. L. Dressler, E. M. M. Flores, and E. I. Müller, “Determination of bromide, chloride, and fluoride in cigarette tobacco by ion chromatography after microwave-induced combustion,” Anal. Lett. 45, 1004–1015 (2012).
[Crossref]

Münster-müller, S.

T. Frömel, S. Münster-müller, and P. T. P. Knepper, “Fluorine analysis using molecular absorption spectroscopy,” (Institute for Analytical Research, Fresenius Polytechnic, 2014).

Nakamura, E.

Q. Wang, A. Makishima, and E. Nakamura, “Determination of fluorine and chlorine by pyrohydrolysis and ion chromatography: comparison with alkaline fusion digestion and ion chromatography,” Geostand. Geoanal. Res. 34, 175–183 (2010).

Nampoori, V. P. N.

S. S. Harilal, C. V. Bindhu, and V. P. N. Nampoori, “Temperature in a laser-produced plasma from YBa2 Cu3O7,” Supercond. Sci. Technol. 11, 449–457 (1998).
[Crossref]

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys. 82, 2140–2146 (1997).
[Crossref]

Naqvi, A. A.

M. A. Gondal, Y. W. Maganda, M. A. Dastageer, F. F. Al Adel, A. A. Naqvi, and T. F. Qahtan, “Detection of carcinogenic chromium in synthetic hair dyes using laser induced breakdown spectroscopy,” Appl. Opt. 53, 1636–1643 (2014).
[Crossref]

M. A. Gondal, Y. W. Maganda, M. A. Dastageer, F. F. Al Adel, A. A. Naqvi, and T. F. Qahtan, “Detection of the level of fluoride in the commercially available toothpaste using laser induced breakdown spectroscopy with the marker atomic transition line of neutral fluorine at 731.1  nm,” Opt. Laser Technol. 57, 32–38 (2014).
[Crossref]

M. A. Gondal, Y. W. Maganda, M. A. Dastageer, F. F. Al-Adel, A. A. Naqvi, and T. F. Qahtan, “Development of a laser induced breakdown sensor for detection of carcinogenic chemicals in cosmetic products,” in 10th International Conference on High Capacity Optical Networks and Emerging/Enabling Technologies (IEEE, 2013), pp. 84–87.

Navarro-Northrup, C.

R. C. Chinni, D. A. Cremers, L. J. Radziemski, M. Bostian, and C. Navarro-Northrup, “Detection of uranium using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 63, 1238–1250 (2009).
[Crossref]

Osterheld, A. L.

A. L. Osterheld, “Principles of plasma spectroscopy,” Nucl. Fusion 38, 1255 (1998).
[Crossref]

Ozbek, N.

N. Ozbek and S. Akman, “Method development for the determination of fluorine in toothpaste via molecular absorption of aluminum mono fluoride using a high-resolution continuum source nitrous oxide/acetylene flame atomic absorption spectrophotometer,” Talanta 94, 246–250 (2012).
[Crossref]

N. Ozbek and S. Akman, “Method development for the determination of fluorine in water samples via molecular absorption of CaF using a high-resolution continuum source electrothermal atomic absorption spectrophotometer,” Talanta 5006, 2–5 (2012).

Perfetti, T. A.

T. A. Perfetti and A. Rodgman, “The complexity of tobacco and tobacco smoke,” Contrib. Tob. Res. 24, 215–218 (2011).

Qahtan, T. F.

M. A. Gondal, Y. W. Maganda, M. A. Dastageer, F. F. Al Adel, A. A. Naqvi, and T. F. Qahtan, “Detection of carcinogenic chromium in synthetic hair dyes using laser induced breakdown spectroscopy,” Appl. Opt. 53, 1636–1643 (2014).
[Crossref]

M. A. Gondal, Y. W. Maganda, M. A. Dastageer, F. F. Al Adel, A. A. Naqvi, and T. F. Qahtan, “Detection of the level of fluoride in the commercially available toothpaste using laser induced breakdown spectroscopy with the marker atomic transition line of neutral fluorine at 731.1  nm,” Opt. Laser Technol. 57, 32–38 (2014).
[Crossref]

M. A. Gondal, Y. W. Maganda, M. A. Dastageer, F. F. Al-Adel, A. A. Naqvi, and T. F. Qahtan, “Development of a laser induced breakdown sensor for detection of carcinogenic chemicals in cosmetic products,” in 10th International Conference on High Capacity Optical Networks and Emerging/Enabling Technologies (IEEE, 2013), pp. 84–87.

Radziemski, L. J.

R. C. Chinni, D. A. Cremers, L. J. Radziemski, M. Bostian, and C. Navarro-Northrup, “Detection of uranium using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 63, 1238–1250 (2009).
[Crossref]

D. A. Cremers and L. J. Radziemski, Handbook of Laser Induced Breakdown Spectroscopy (Wiley, 1997), pp. 29–68.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006), Chap. 8, pp. 23–65

Reinhard, N.

N. Reinhard, Laser-Induced Breakdown Spectroscopy—Fundamentals and Applications (Springer, 2015).

Rodgman, A.

T. A. Perfetti and A. Rodgman, “The complexity of tobacco and tobacco smoke,” Contrib. Tob. Res. 24, 215–218 (2011).

Sabsabi, M.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta, Part B 56, 987–1002 (2001).
[Crossref]

Sage, G.

C. A. Tylenda, D. Jones, L. Ingerman, G. Sage, and L. Chappell, “Toxicological profile for fluorides, hydrogen fluoride, and fluorine,” Fluoride 422, 16–20 (2003).

Samek, O.

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).
[Crossref]

Santagata, A.

F. Colao, R. Fantoni, V. Lazic, A. Morone, A. Santagata, and A. Giardini, “LIBS used as a diagnostic tool during the laser cleaning of ancient marble from mediterranean areas,” Appl. Phys. A 79, 213–219 (2004).
[Crossref]

Santhosh, C.

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana 74, 983–993 (2010).
[Crossref]

Sequeira, E.

N. J. Chinoy and E. Sequeira, “Reversible fluoride induced fertility impairment in male mice,” Fluoride 25, 71–76 (1992).

Shin, H. M.

Y. J. Hong, G. C. Kwon, G. Cho, H. M. Shin, and E. H. Choi, “Measurement of electron temperature and density using stark broadening of the coaxial focused plasma for extreme ultraviolet lithography,” IEEE Trans. Plasma Sci. 38, 1111–1117 (2010).
[Crossref]

Strochkova, L. S.

A. A. Zahvoronkov and L. S. Strochkova, “Fluorosis: geographical pathology and some experimental findings,” Fluoride 14, 182–191 (1981).

Suri, B. M.

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana 74, 983–993 (2010).
[Crossref]

Susheela, A. K.

R. D. Kaul and A. K. Susheela, “Evidence of muscle fiber degeneration in rabbits treated with sodium fluoride,” Fluoride 7, 177–181 (1974).

Telle, H. H.

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).
[Crossref]

Tylenda, C. A.

C. A. Tylenda, D. Jones, L. Ingerman, G. Sage, and L. Chappell, “Toxicological profile for fluorides, hydrogen fluoride, and fluorine,” Fluoride 422, 16–20 (2003).

Unnikrishnan, V. K.

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana 74, 983–993 (2010).
[Crossref]

Vallabhan, C. P. G.

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys. 82, 2140–2146 (1997).
[Crossref]

van Hilten, J. J.

J. Marinus, G. L. Moseley, F. Birklein, R. Baron, C. Maihöfner, W. S. Kingery, and J. J. van Hilten, “Clinical features and pathophysiology of complex regional pain syndrome,” Lancet Neurol. 10, 637–648 (2011).

Vidal, F.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta, Part B 56, 987–1002 (2001).
[Crossref]

von Kaenel, Y.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta, Part B 56, 987–1002 (2001).
[Crossref]

Wang, Q.

Q. Wang, A. Makishima, and E. Nakamura, “Determination of fluorine and chlorine by pyrohydrolysis and ion chromatography: comparison with alkaline fusion digestion and ion chromatography,” Geostand. Geoanal. Res. 34, 175–183 (2010).

Welz, B.

H. Gleisner, J. W. Einax, S. Morés, B. Welz, and E. Carasek, “A fast and accurate method for the determination of total and soluble fluorine in toothpaste using high-resolution graphite furnace molecular absorption spectrometry and its comparison with established techniques,” J. Pharm. Biomed. Anal. 54, 1040–1046 (2011).
[Crossref]

H. Gleisner, B. Welz, and J. W. Einax, “Optimization of fluorine determination via the molecular absorption of gallium mono-fluoride in a graphite furnace using a high-resolution continuum source spectrometer,” Spectrochim. Acta, Part B 65, 864–869 (2010).
[Crossref]

Wiegand, A.

T. Attin, A. M. Lennon, M. Yakin, K. Becker, W. Buchalla, R. Attin, and A. Wiegand, “Deposition of fluoride on enamel surfaces released from varnishes is limited to vicinity of fluoridation site,” Clin. Oral Invest. 11, 83–88 (2007).

Wiese, W. L.

N. Konjević and W. L. Wiese, “Experimental stark widths and shifts for spectral lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 31, 819–927 (2002).
[Crossref]

Yakin, M.

T. Attin, A. M. Lennon, M. Yakin, K. Becker, W. Buchalla, R. Attin, and A. Wiegand, “Deposition of fluoride on enamel surfaces released from varnishes is limited to vicinity of fluoridation site,” Clin. Oral Invest. 11, 83–88 (2007).

Yamamoto, K. Y.

K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, and L. E. Foster, “Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50, 222–233 (1996).
[Crossref]

Yamani, Z. H.

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “The role of various binding materials for trace elemental analysis of powder samples using laser-induced breakdown spectroscopy,” Talanta 72, 642–649 (2007).
[Crossref]

Zahvoronkov, A. A.

A. A. Zahvoronkov and L. S. Strochkova, “Fluorosis: geographical pathology and some experimental findings,” Fluoride 14, 182–191 (1981).

Anal. Lett. (1)

A. L. H. Müller, C. C. Müller, F. G. Antes, J. S. Barin, V. L. Dressler, E. M. M. Flores, and E. I. Müller, “Determination of bromide, chloride, and fluoride in cigarette tobacco by ion chromatography after microwave-induced combustion,” Anal. Lett. 45, 1004–1015 (2012).
[Crossref]

Appl. Opt. (1)

M. A. Gondal, Y. W. Maganda, M. A. Dastageer, F. F. Al Adel, A. A. Naqvi, and T. F. Qahtan, “Detection of carcinogenic chromium in synthetic hair dyes using laser induced breakdown spectroscopy,” Appl. Opt. 53, 1636–1643 (2014).
[Crossref]

Appl. Phys. A (2)

F. Colao, R. Fantoni, V. Lazic, A. Morone, A. Santagata, and A. Giardini, “LIBS used as a diagnostic tool during the laser cleaning of ancient marble from mediterranean areas,” Appl. Phys. A 79, 213–219 (2004).
[Crossref]

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).
[Crossref]

Appl. Spectrosc. (2)

R. C. Chinni, D. A. Cremers, L. J. Radziemski, M. Bostian, and C. Navarro-Northrup, “Detection of uranium using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 63, 1238–1250 (2009).
[Crossref]

K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, and L. E. Foster, “Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50, 222–233 (1996).
[Crossref]

Bull. Environ. Contam. Toxicol. (1)

T. Hussain and M. A. Gondal, “Detection of toxic metals in waste water from dairy products plant using laser induced breakdown spectroscopy,” Bull. Environ. Contam. Toxicol. 80, 561–565 (2008).
[Crossref]

Clin. Oral Invest. (1)

T. Attin, A. M. Lennon, M. Yakin, K. Becker, W. Buchalla, R. Attin, and A. Wiegand, “Deposition of fluoride on enamel surfaces released from varnishes is limited to vicinity of fluoridation site,” Clin. Oral Invest. 11, 83–88 (2007).

Contrib. Tob. Res. (1)

T. A. Perfetti and A. Rodgman, “The complexity of tobacco and tobacco smoke,” Contrib. Tob. Res. 24, 215–218 (2011).

Fluoride (4)

C. A. Tylenda, D. Jones, L. Ingerman, G. Sage, and L. Chappell, “Toxicological profile for fluorides, hydrogen fluoride, and fluorine,” Fluoride 422, 16–20 (2003).

A. A. Zahvoronkov and L. S. Strochkova, “Fluorosis: geographical pathology and some experimental findings,” Fluoride 14, 182–191 (1981).

R. D. Kaul and A. K. Susheela, “Evidence of muscle fiber degeneration in rabbits treated with sodium fluoride,” Fluoride 7, 177–181 (1974).

N. J. Chinoy and E. Sequeira, “Reversible fluoride induced fertility impairment in male mice,” Fluoride 25, 71–76 (1992).

Geostand. Geoanal. Res. (1)

Q. Wang, A. Makishima, and E. Nakamura, “Determination of fluorine and chlorine by pyrohydrolysis and ion chromatography: comparison with alkaline fusion digestion and ion chromatography,” Geostand. Geoanal. Res. 34, 175–183 (2010).

IEEE Trans. Plasma Sci. (1)

Y. J. Hong, G. C. Kwon, G. Cho, H. M. Shin, and E. H. Choi, “Measurement of electron temperature and density using stark broadening of the coaxial focused plasma for extreme ultraviolet lithography,” IEEE Trans. Plasma Sci. 38, 1111–1117 (2010).
[Crossref]

J. Appl. Phys. (2)

A. E. Hussein, P. K. Diwakar, S. S. Harilal, and A. Hassanein, “The role of laser wavelength on plasma generation and expansion of ablation plumes in air,” J. Appl. Phys. 113, 143305 (2013).
[Crossref]

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys. 82, 2140–2146 (1997).
[Crossref]

J. Chromatogr. A (1)

P. Blatn and F. Kvasni, “Determination of fluoride in feed mixtures by capillary isotachophoresis,” J. Chromatogr. A 670, 223–228 (1994).
[Crossref]

J. Hazard. Mater. (1)

C. Meenakshi and R. C. Maheshwari, “Fluoride in drinking water and its removal,” J. Hazard. Mater. 137, 456–463 (2006).
[Crossref]

J. Pharm. Biomed. Anal. (1)

H. Gleisner, J. W. Einax, S. Morés, B. Welz, and E. Carasek, “A fast and accurate method for the determination of total and soluble fluorine in toothpaste using high-resolution graphite furnace molecular absorption spectrometry and its comparison with established techniques,” J. Pharm. Biomed. Anal. 54, 1040–1046 (2011).
[Crossref]

J. Phys. Chem. Ref. Data (1)

N. Konjević and W. L. Wiese, “Experimental stark widths and shifts for spectral lines of neutral and ionized atoms,” J. Phys. Chem. Ref. Data 31, 819–927 (2002).
[Crossref]

J. Plasma Phys. (1)

R. H. Huddlestone and L. S. Leonaed, “Plasma diagnostic techniques,” J. Plasma Phys. 1, 156 (1965).

Lancet Neurol. (1)

J. Marinus, G. L. Moseley, F. Birklein, R. Baron, C. Maihöfner, W. S. Kingery, and J. J. van Hilten, “Clinical features and pathophysiology of complex regional pain syndrome,” Lancet Neurol. 10, 637–648 (2011).

Nucl. Fusion (1)

A. L. Osterheld, “Principles of plasma spectroscopy,” Nucl. Fusion 38, 1255 (1998).
[Crossref]

Opt. Laser Technol. (1)

M. A. Gondal, Y. W. Maganda, M. A. Dastageer, F. F. Al Adel, A. A. Naqvi, and T. F. Qahtan, “Detection of the level of fluoride in the commercially available toothpaste using laser induced breakdown spectroscopy with the marker atomic transition line of neutral fluorine at 731.1  nm,” Opt. Laser Technol. 57, 32–38 (2014).
[Crossref]

Pramana (1)

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana 74, 983–993 (2010).
[Crossref]

Saudi Dental J. (1)

A. R. Al-shammery, E. E. Guile, and M. El Backly, “The prevalence of dental fluorosis in Saudi Arabia,” Saudi Dental J. 9, 11–14 (1997).

Spectrochim. Acta, Part B (2)

H. Gleisner, B. Welz, and J. W. Einax, “Optimization of fluorine determination via the molecular absorption of gallium mono-fluoride in a graphite furnace using a high-resolution continuum source spectrometer,” Spectrochim. Acta, Part B 65, 864–869 (2010).
[Crossref]

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta, Part B 56, 987–1002 (2001).
[Crossref]

Supercond. Sci. Technol. (1)

S. S. Harilal, C. V. Bindhu, and V. P. N. Nampoori, “Temperature in a laser-produced plasma from YBa2 Cu3O7,” Supercond. Sci. Technol. 11, 449–457 (1998).
[Crossref]

Talanta (4)

M. A. Gondal and T. Hussain, “Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy,” Talanta 71, 73–80 (2007).
[Crossref]

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “The role of various binding materials for trace elemental analysis of powder samples using laser-induced breakdown spectroscopy,” Talanta 72, 642–649 (2007).
[Crossref]

N. Ozbek and S. Akman, “Method development for the determination of fluorine in water samples via molecular absorption of CaF using a high-resolution continuum source electrothermal atomic absorption spectrophotometer,” Talanta 5006, 2–5 (2012).

N. Ozbek and S. Akman, “Method development for the determination of fluorine in toothpaste via molecular absorption of aluminum mono fluoride using a high-resolution continuum source nitrous oxide/acetylene flame atomic absorption spectrophotometer,” Talanta 94, 246–250 (2012).
[Crossref]

Other (6)

T. Frömel, S. Münster-müller, and P. T. P. Knepper, “Fluorine analysis using molecular absorption spectroscopy,” (Institute for Analytical Research, Fresenius Polytechnic, 2014).

M. A. Gondal, Y. W. Maganda, M. A. Dastageer, F. F. Al-Adel, A. A. Naqvi, and T. F. Qahtan, “Development of a laser induced breakdown sensor for detection of carcinogenic chemicals in cosmetic products,” in 10th International Conference on High Capacity Optical Networks and Emerging/Enabling Technologies (IEEE, 2013), pp. 84–87.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006), Chap. 8, pp. 23–65

D. A. Cremers and L. J. Radziemski, Handbook of Laser Induced Breakdown Spectroscopy (Wiley, 1997), pp. 29–68.

U.S. Department of Commerce, “NIST Physical Reference Data.”

N. Reinhard, Laser-Induced Breakdown Spectroscopy—Fundamentals and Applications (Springer, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Pictorial view of the palletization of tobacco cigarettes (a) as prepared cigarettes, (b) separated tobacco grain from a cigarette, and (c) palletized tobacco cigarettes for LIBS analysis.
Fig. 2.
Fig. 2. Selected isolated atomic transition line of barium (Ba I) for plasma temperature estimation.
Fig. 3.
Fig. 3. Boltzmann plot to calculate the plasma temperature of the tobacco cigarettes.
Fig. 4.
Fig. 4. Stark broadening profile for characteristics atomic transition lines of neutral barium (Ba I) to estimate the electron density.
Fig. 5.
Fig. 5. LIBS signal intensity dependence on time delay for fluorine line (F I 690.2 nm) in tobacco cigarettes.
Fig. 6.
Fig. 6. LIBS signal intensity dependence on laser energy for fluorine line (F I 690.2 nm) in tobacco cigarette.
Fig. 7.
Fig. 7. Typical LIBS spectra for F I line in tobacco cigarettes (sample 1–4) within the 660–760 nm wavelength range. The identified F I line is indicated as enclosed in the box.
Fig. 8.
Fig. 8. Superimposed LIBS spectra of standard samples having 122, 231, 348, 420, and 537 ppm fluoride concentrations for plotting the calibration curve.
Fig. 9.
Fig. 9. LIBS calibration curve for fluorine in tobacco cigarettes.

Tables (2)

Tables Icon

Table 1. Selected Wavelength for Characteristics Atomic Transition Lines of Neutral Barium (Ba I) and Other Parameters Used for Boltzmann’s Plot

Tables Icon

Table 2. Concentration of Fluorine Detected in Various Tobacco Cigarette Samples Using our LIBS Setup

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n e 1.6 × 10 12 T 1 / 2 ( Δ E ) 3 ,
In [ λ K I , Z I z A K I g K Z ] = E k z K B T In [ 4 π Z h c N 0 ] ,
Δ λ 1 / 2 = 2 w [ n e 10 6 ] + 3.5 [ n e 10 6 ] 1 / 4 + [ 1 3 4 N D 1 / 3 ] w [ n e 10 16 ] A 0 ,
Δ λ 1 / 2 = 2 w [ n e 10 16 ] .
LOD = 2 [ SD S ] ,

Metrics