Abstract

The James Webb Space Telescope (JWST) Optical Telescope Element is a three mirror anastigmat consisting of a 6.5 m segmented primary mirror (PM), a secondary mirror, and a tertiary mirror. The primary mirror comprises 18 individual hexagonal segments. The telescope and instruments will be assembled at Goddard Space Flight Center (GSFC) to build the Optical Telescope Element-Integrated Science Instrument Module (OTIS). While at GSFC, the OTIS will go through a series of environmental tests. In these tests the OTIS will be exposed to launch level acoustics and vibrations. To assure that OTIS’s performance has not changed due to these environmental tests, the assembly will be tested optically at the center of curvature of the PM. A high-speed interferometer has been designed and built to characterize both static and dynamic changes due to environmental exposure. This paper describes the details of these measurement techniques. To validate and develop the techniques that will be used on OTIS assembly two spare JWST PM segments were measured and the results presented here.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Measurement of picometer-scale mirror dynamics

Babak Saif, David Chaney, Perry Greenfield, Marcel Bluth, Kyle Van Gorkom, Koby Smith, Josh Bluth, Lee Feinberg, James C. Wyant, Michael North-Morris, and Ritva Keski-Kuha
Appl. Opt. 56(23) 6457-6465 (2017)

Effect of correction of ocular aberration dynamics on the accommodation response to a sinusoidally moving stimulus

Sem Sem Chin, Karen M. Hampson, and Edward A. H. Mallen
Opt. Lett. 34(21) 3274-3276 (2009)

In-focus wavefront sensing using non-redundant mask-induced pupil diversity

Alexandra Z. Greenbaum and Anand Sivaramakrishnan
Opt. Express 24(14) 15506-15521 (2016)

References

  • View by:
  • |
  • |
  • |

  1. 4D Technology, in Tucson, AZ, http://www.4dtechnology.com .
  2. B. Saif, R. Keski-Kuha, L. Feinberg, D. Chaney, M. Bluth, P. Greenfield, W. Hack, S. Smith, and J. Sanders, “New method for characterizing the state of optical and opto-mechanical systems,” Proc. SPIE 9143, 91430C (2014).
    [Crossref]
  3. L. D. Feinberg, M. Clampin, R. Keski-Kuha, C. Atkinson, and S. Texter, “James Webb Space Telescope optical element development history and results,” Proc. SPIE 8442, 84422B (2012).
  4. J. B. Hadaway, D. M. Chaney, and L. M. Carey, “The optical metrology system for cryogenic testing of the JWST primary mirror segments,” Proc. SPIE 8126, 81260P (2011).
    [Crossref]
  5. D. M. Chaney, J. B. Hadaway, J. Lewis, B. Gallagher, and B. Brown, “Cryogenic performance of the JWST primary mirror segment engineering development unit,” Proc. SPIE 8150, 815008 (2011).
    [Crossref]
  6. B. Saif, M. Bluth, P. Greenfield, W. Hack, B. Eegholm, P. Blake, R. Keski-Kuha, L. Feinberg, and J. W. Arenberg, “Measurement of large cryogenic structures using a spatially phase-shifted digital speckle pattern interferometer,” Appl. Opt. 47, 737–745 (2008).
    [Crossref]

2014 (1)

B. Saif, R. Keski-Kuha, L. Feinberg, D. Chaney, M. Bluth, P. Greenfield, W. Hack, S. Smith, and J. Sanders, “New method for characterizing the state of optical and opto-mechanical systems,” Proc. SPIE 9143, 91430C (2014).
[Crossref]

2012 (1)

L. D. Feinberg, M. Clampin, R. Keski-Kuha, C. Atkinson, and S. Texter, “James Webb Space Telescope optical element development history and results,” Proc. SPIE 8442, 84422B (2012).

2011 (2)

J. B. Hadaway, D. M. Chaney, and L. M. Carey, “The optical metrology system for cryogenic testing of the JWST primary mirror segments,” Proc. SPIE 8126, 81260P (2011).
[Crossref]

D. M. Chaney, J. B. Hadaway, J. Lewis, B. Gallagher, and B. Brown, “Cryogenic performance of the JWST primary mirror segment engineering development unit,” Proc. SPIE 8150, 815008 (2011).
[Crossref]

2008 (1)

Arenberg, J. W.

Atkinson, C.

L. D. Feinberg, M. Clampin, R. Keski-Kuha, C. Atkinson, and S. Texter, “James Webb Space Telescope optical element development history and results,” Proc. SPIE 8442, 84422B (2012).

Blake, P.

Bluth, M.

B. Saif, R. Keski-Kuha, L. Feinberg, D. Chaney, M. Bluth, P. Greenfield, W. Hack, S. Smith, and J. Sanders, “New method for characterizing the state of optical and opto-mechanical systems,” Proc. SPIE 9143, 91430C (2014).
[Crossref]

B. Saif, M. Bluth, P. Greenfield, W. Hack, B. Eegholm, P. Blake, R. Keski-Kuha, L. Feinberg, and J. W. Arenberg, “Measurement of large cryogenic structures using a spatially phase-shifted digital speckle pattern interferometer,” Appl. Opt. 47, 737–745 (2008).
[Crossref]

Brown, B.

D. M. Chaney, J. B. Hadaway, J. Lewis, B. Gallagher, and B. Brown, “Cryogenic performance of the JWST primary mirror segment engineering development unit,” Proc. SPIE 8150, 815008 (2011).
[Crossref]

Carey, L. M.

J. B. Hadaway, D. M. Chaney, and L. M. Carey, “The optical metrology system for cryogenic testing of the JWST primary mirror segments,” Proc. SPIE 8126, 81260P (2011).
[Crossref]

Chaney, D.

B. Saif, R. Keski-Kuha, L. Feinberg, D. Chaney, M. Bluth, P. Greenfield, W. Hack, S. Smith, and J. Sanders, “New method for characterizing the state of optical and opto-mechanical systems,” Proc. SPIE 9143, 91430C (2014).
[Crossref]

Chaney, D. M.

J. B. Hadaway, D. M. Chaney, and L. M. Carey, “The optical metrology system for cryogenic testing of the JWST primary mirror segments,” Proc. SPIE 8126, 81260P (2011).
[Crossref]

D. M. Chaney, J. B. Hadaway, J. Lewis, B. Gallagher, and B. Brown, “Cryogenic performance of the JWST primary mirror segment engineering development unit,” Proc. SPIE 8150, 815008 (2011).
[Crossref]

Clampin, M.

L. D. Feinberg, M. Clampin, R. Keski-Kuha, C. Atkinson, and S. Texter, “James Webb Space Telescope optical element development history and results,” Proc. SPIE 8442, 84422B (2012).

Eegholm, B.

Feinberg, L.

B. Saif, R. Keski-Kuha, L. Feinberg, D. Chaney, M. Bluth, P. Greenfield, W. Hack, S. Smith, and J. Sanders, “New method for characterizing the state of optical and opto-mechanical systems,” Proc. SPIE 9143, 91430C (2014).
[Crossref]

B. Saif, M. Bluth, P. Greenfield, W. Hack, B. Eegholm, P. Blake, R. Keski-Kuha, L. Feinberg, and J. W. Arenberg, “Measurement of large cryogenic structures using a spatially phase-shifted digital speckle pattern interferometer,” Appl. Opt. 47, 737–745 (2008).
[Crossref]

Feinberg, L. D.

L. D. Feinberg, M. Clampin, R. Keski-Kuha, C. Atkinson, and S. Texter, “James Webb Space Telescope optical element development history and results,” Proc. SPIE 8442, 84422B (2012).

Gallagher, B.

D. M. Chaney, J. B. Hadaway, J. Lewis, B. Gallagher, and B. Brown, “Cryogenic performance of the JWST primary mirror segment engineering development unit,” Proc. SPIE 8150, 815008 (2011).
[Crossref]

Greenfield, P.

B. Saif, R. Keski-Kuha, L. Feinberg, D. Chaney, M. Bluth, P. Greenfield, W. Hack, S. Smith, and J. Sanders, “New method for characterizing the state of optical and opto-mechanical systems,” Proc. SPIE 9143, 91430C (2014).
[Crossref]

B. Saif, M. Bluth, P. Greenfield, W. Hack, B. Eegholm, P. Blake, R. Keski-Kuha, L. Feinberg, and J. W. Arenberg, “Measurement of large cryogenic structures using a spatially phase-shifted digital speckle pattern interferometer,” Appl. Opt. 47, 737–745 (2008).
[Crossref]

Hack, W.

B. Saif, R. Keski-Kuha, L. Feinberg, D. Chaney, M. Bluth, P. Greenfield, W. Hack, S. Smith, and J. Sanders, “New method for characterizing the state of optical and opto-mechanical systems,” Proc. SPIE 9143, 91430C (2014).
[Crossref]

B. Saif, M. Bluth, P. Greenfield, W. Hack, B. Eegholm, P. Blake, R. Keski-Kuha, L. Feinberg, and J. W. Arenberg, “Measurement of large cryogenic structures using a spatially phase-shifted digital speckle pattern interferometer,” Appl. Opt. 47, 737–745 (2008).
[Crossref]

Hadaway, J. B.

D. M. Chaney, J. B. Hadaway, J. Lewis, B. Gallagher, and B. Brown, “Cryogenic performance of the JWST primary mirror segment engineering development unit,” Proc. SPIE 8150, 815008 (2011).
[Crossref]

J. B. Hadaway, D. M. Chaney, and L. M. Carey, “The optical metrology system for cryogenic testing of the JWST primary mirror segments,” Proc. SPIE 8126, 81260P (2011).
[Crossref]

Keski-Kuha, R.

B. Saif, R. Keski-Kuha, L. Feinberg, D. Chaney, M. Bluth, P. Greenfield, W. Hack, S. Smith, and J. Sanders, “New method for characterizing the state of optical and opto-mechanical systems,” Proc. SPIE 9143, 91430C (2014).
[Crossref]

L. D. Feinberg, M. Clampin, R. Keski-Kuha, C. Atkinson, and S. Texter, “James Webb Space Telescope optical element development history and results,” Proc. SPIE 8442, 84422B (2012).

B. Saif, M. Bluth, P. Greenfield, W. Hack, B. Eegholm, P. Blake, R. Keski-Kuha, L. Feinberg, and J. W. Arenberg, “Measurement of large cryogenic structures using a spatially phase-shifted digital speckle pattern interferometer,” Appl. Opt. 47, 737–745 (2008).
[Crossref]

Lewis, J.

D. M. Chaney, J. B. Hadaway, J. Lewis, B. Gallagher, and B. Brown, “Cryogenic performance of the JWST primary mirror segment engineering development unit,” Proc. SPIE 8150, 815008 (2011).
[Crossref]

Saif, B.

B. Saif, R. Keski-Kuha, L. Feinberg, D. Chaney, M. Bluth, P. Greenfield, W. Hack, S. Smith, and J. Sanders, “New method for characterizing the state of optical and opto-mechanical systems,” Proc. SPIE 9143, 91430C (2014).
[Crossref]

B. Saif, M. Bluth, P. Greenfield, W. Hack, B. Eegholm, P. Blake, R. Keski-Kuha, L. Feinberg, and J. W. Arenberg, “Measurement of large cryogenic structures using a spatially phase-shifted digital speckle pattern interferometer,” Appl. Opt. 47, 737–745 (2008).
[Crossref]

Sanders, J.

B. Saif, R. Keski-Kuha, L. Feinberg, D. Chaney, M. Bluth, P. Greenfield, W. Hack, S. Smith, and J. Sanders, “New method for characterizing the state of optical and opto-mechanical systems,” Proc. SPIE 9143, 91430C (2014).
[Crossref]

Smith, S.

B. Saif, R. Keski-Kuha, L. Feinberg, D. Chaney, M. Bluth, P. Greenfield, W. Hack, S. Smith, and J. Sanders, “New method for characterizing the state of optical and opto-mechanical systems,” Proc. SPIE 9143, 91430C (2014).
[Crossref]

Texter, S.

L. D. Feinberg, M. Clampin, R. Keski-Kuha, C. Atkinson, and S. Texter, “James Webb Space Telescope optical element development history and results,” Proc. SPIE 8442, 84422B (2012).

Appl. Opt. (1)

Proc. SPIE (4)

B. Saif, R. Keski-Kuha, L. Feinberg, D. Chaney, M. Bluth, P. Greenfield, W. Hack, S. Smith, and J. Sanders, “New method for characterizing the state of optical and opto-mechanical systems,” Proc. SPIE 9143, 91430C (2014).
[Crossref]

L. D. Feinberg, M. Clampin, R. Keski-Kuha, C. Atkinson, and S. Texter, “James Webb Space Telescope optical element development history and results,” Proc. SPIE 8442, 84422B (2012).

J. B. Hadaway, D. M. Chaney, and L. M. Carey, “The optical metrology system for cryogenic testing of the JWST primary mirror segments,” Proc. SPIE 8126, 81260P (2011).
[Crossref]

D. M. Chaney, J. B. Hadaway, J. Lewis, B. Gallagher, and B. Brown, “Cryogenic performance of the JWST primary mirror segment engineering development unit,” Proc. SPIE 8150, 815008 (2011).
[Crossref]

Other (1)

4D Technology, in Tucson, AZ, http://www.4dtechnology.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (27)

Fig. 1.
Fig. 1. EDU and C7 mirrors on the test stand.
Fig. 2.
Fig. 2. Center of curvature test layout for EDU testing.
Fig. 3.
Fig. 3. Surface figure example showing comparison measurement.
Fig. 4.
Fig. 4. Static reproducibility measurement results.
Fig. 5.
Fig. 5. Vibration stinger attached to the mirror and stand assemblies.
Fig. 6.
Fig. 6. Test stand with brackets applied to modify stiffness.
Fig. 7.
Fig. 7. Test control system and data flow.
Fig. 8.
Fig. 8. PSDs for several pixels under varying input forces.
Fig. 9.
Fig. 9. Velocities for several pixels showing the effect of exceeding limit.
Fig. 10.
Fig. 10. Spatially mapped transfer functions for 87.3 Hz sine input (frequency is the tilt mode of the mirror).
Fig. 11.
Fig. 11. Tstat values for 87.3 Hz sine input.
Fig. 12.
Fig. 12. Spatially mapped transfer functions for 65 Hz sine input (mode of the test stand).
Fig. 13.
Fig. 13. Tstat values for 65 Hz sine input.
Fig. 14.
Fig. 14. Tstat values for 65 Hz sine input.
Fig. 15.
Fig. 15. Model used for backplane and mirror analysis.
Fig. 16.
Fig. 16. Model load and boundary conditions.
Fig. 17.
Fig. 17. Location of the removed bond for trade analysis.
Fig. 18.
Fig. 18. Difference in gain results (trade–nominal, 40 Hz input).
Fig. 19.
Fig. 19. Difference in phase results (trade–nominal, 40 Hz input).
Fig. 20.
Fig. 20. Difference in gain results (trade–nominal, 60 Hz input).
Fig. 21.
Fig. 21. Difference in phase results (trade–nominal, 40 Hz input).
Fig. 22.
Fig. 22. Rigid body and deformation spatial modes at 87.3 Hz with a delta function bandwidth.
Fig. 23.
Fig. 23. Amplitude of rigid body and associated deformation versus time for 87.3 Hz with a delta function bandwidth.
Fig. 24.
Fig. 24. Rigid body and deformation spatial modes at 87.3 Hz with a 20 Hz bandwidth.
Fig. 25.
Fig. 25. Amplitude of rigid body and associated deformation versus time for 87.3 Hz with a 20 Hz bandwidth.
Fig. 26.
Fig. 26. Zernike PSD for the first three Zernike terms.
Fig. 27.
Fig. 27. Reference pixel corrected for DMI.

Tables (8)

Tables Icon

Table 1. Sine 87 Hz Gain Zernike Terms

Tables Icon

Table 2. Sine 87 Hz Gain Zernike Tstat Results

Tables Icon

Table 3. Sine 87 Hz Phase Lag Zernike Terms

Tables Icon

Table 4. Sine 87 Hz Phase Tstat Results

Tables Icon

Table 5. Sine 65 Hz Gain Zernike Terms

Tables Icon

Table 6. Sine 65 Hz Gain Zernike Tstat Results

Tables Icon

Table 7. Sine 65 Hz Phase Lag Zernike Terms

Tables Icon

Table 8. Sine 65 Hz Phase Lag Zernike Tstat Results

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T stat = μ 1 μ 2 s 1 2 N 1 + s 2 2 N 2 .
( φ HSI ) Corrected = MOD [ ( DMI ( φ HSI ) λ 4 π ) + λ 4 , λ 2 ] .

Metrics