Abstract

This paper describes the establishment and application of the 0/45 reflectance factor scale in the shortwave infrared (SWIR) from 1100 to 2500 nm. Design, characterization, and the demonstration of a four-stage, extended indium-gallium-arsenide radiometer to perform reflectance measurements in the SWIR have been previously discussed. Here, we focus on the incorporation of the radiometer into the national reference reflectometer, its validation through comparison measurements, and the uncertainty budget. Next, this capability is applied to the measurement of three different diffuser materials. The 0/45 spectral reflectance factors for these materials are reported and compared to their respective 6/di spectral reflectance factors.

Full Article  |  PDF Article
OSA Recommended Articles
Comparison measurements of 0∶45 radiance factor and goniometrically determined diffuse reflectance

Silja Holopainen, Farshid Manoocheri, Erkki Ikonen, Kai-Olaf Hauer, and Andreas Höpe
Appl. Opt. 48(15) 2946-2956 (2009)

Bidirectional reflectance scale comparison between NIST and PTB

Catherine C. Cooksey, Maria E. Nadal, David W. Allen, Kai-Olaf Hauer, and Andreas Höpe
Appl. Opt. 54(13) 4006-4015 (2015)

Reflection properties of pressed polytetrafluoroethylene powder

Victor R. Weidner and Jack J. Hsia
J. Opt. Soc. Am. 71(7) 856-861 (1981)

References

  • View by:
  • |
  • |
  • |

  1. F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, “Geometrical considerations and nomenclature for reflectance,” (1977).
  2. H. W. Yoon, D. W. Allen, G. P. Eppeldauer, and B. K. Tsai, “The extension of the NIST BRDF scale from 1100  nm to 2500  nm,” Proc. SPIE 7452, 745204 (2009).
    [Crossref]
  3. P. Y. Barnes, E. A. Early, and A. C. Parr, “Spectral reflectance,” , U.S. Dept. of Commerce, March1998.
  4. H. W. Yoon, M. C. Dopkiss, and G. P. Eppeldauer, “Performance comparisons of InGaAs, extended InGaAs, and short-wave HgCdTe detectors between 1  μm and 2.5  μm,” Proc. SPIE 6297, 629703 (2006).
    [Crossref]
  5. J. H. Walker, R. D. Saunders, and A. T. Hattenburg, “Spectral radiance calibrations,” , U.S. Dept. of Commerce, Jan. 1987.
  6. H. W. Yoon and C. E. Gibson, “Spectral irradiance calibrations,” , U.S. Dept. of Commerce, July 2011.
  7. JCBM 100:2008, “Evaluation of measurement data: guide to the expression of uncertainty in measurement,” http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf (12January2014
  8. B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” (1994).
  9. K. D. Mielenz and K. L. Eckerle, “Spectrophotometer linearity testing using the double-aperture method,” Appl. Opt. 11, 2294–2303 (1972).
    [Crossref]
  10. J. Root, Mt. Baker Research L.L.C, 2921 Sylvan Street, Bellingham, Washington 98228-0370 (personal communication, 2014).
  11. D. Hünerhoff, U. Grusemann, and A. Höpe, “New robot-based gonioreflectometer for measuring spectral diffuse reflection,” Metrologia 43, S11–S16 (2006).
    [Crossref]
  12. G. T. Georgiev, J. J. Butler, C. C. Cooksey, L. Ding, and K. J. Thome, “SWIR calibration of spectralon reflectance factor,” Proc. SPIE 8176, 81760W (2011).
    [Crossref]
  13. W. H. Venable, J. J. Hsia, and V. R. Weidner, “Establishing a scale of directional-hemispherical reflectance factor I: the Van den Akker method,” J. Res. Natl. Bur. Stand. 82, 29–55 (1977).
  14. V. R. Weidner and J. J. Hsia, “Reflection properties of pressed polytetrafluoroethylene powder,” J. Opt. Soc. Am. 71, 856–861 (1981).
    [Crossref]
  15. “NIST/SEMATECH e-Handbook of Statistical Methods,” http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd132.htm (accessed 6February 2015).
  16. P. Y. Barnes and J. J. Hsia, “45°/0° reflectance factors of pressed polytetrafluoroethylene (PTFE) powder,” , U. S. Dept. of Commerce, July1995.
  17. H. J. Patrick, C. J. Zarobila, and T. A. Germer, “The NIST Robotic Optical Scatter Instrument (ROSI) and its application to BRDF measurements of diffuse reflectance standards for remote sensing,” Proc. SPIE 8866, 886615 (2013).
    [Crossref]
  18. References are made to certain commercially available products in this paper to adequately specify the experimental procedures involved. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that these products are the best for the purpose specified.

2013 (1)

H. J. Patrick, C. J. Zarobila, and T. A. Germer, “The NIST Robotic Optical Scatter Instrument (ROSI) and its application to BRDF measurements of diffuse reflectance standards for remote sensing,” Proc. SPIE 8866, 886615 (2013).
[Crossref]

2011 (1)

G. T. Georgiev, J. J. Butler, C. C. Cooksey, L. Ding, and K. J. Thome, “SWIR calibration of spectralon reflectance factor,” Proc. SPIE 8176, 81760W (2011).
[Crossref]

2009 (1)

H. W. Yoon, D. W. Allen, G. P. Eppeldauer, and B. K. Tsai, “The extension of the NIST BRDF scale from 1100  nm to 2500  nm,” Proc. SPIE 7452, 745204 (2009).
[Crossref]

2006 (2)

H. W. Yoon, M. C. Dopkiss, and G. P. Eppeldauer, “Performance comparisons of InGaAs, extended InGaAs, and short-wave HgCdTe detectors between 1  μm and 2.5  μm,” Proc. SPIE 6297, 629703 (2006).
[Crossref]

D. Hünerhoff, U. Grusemann, and A. Höpe, “New robot-based gonioreflectometer for measuring spectral diffuse reflection,” Metrologia 43, S11–S16 (2006).
[Crossref]

1981 (1)

1977 (1)

W. H. Venable, J. J. Hsia, and V. R. Weidner, “Establishing a scale of directional-hemispherical reflectance factor I: the Van den Akker method,” J. Res. Natl. Bur. Stand. 82, 29–55 (1977).

1972 (1)

Allen, D. W.

H. W. Yoon, D. W. Allen, G. P. Eppeldauer, and B. K. Tsai, “The extension of the NIST BRDF scale from 1100  nm to 2500  nm,” Proc. SPIE 7452, 745204 (2009).
[Crossref]

Barnes, P. Y.

P. Y. Barnes, E. A. Early, and A. C. Parr, “Spectral reflectance,” , U.S. Dept. of Commerce, March1998.

P. Y. Barnes and J. J. Hsia, “45°/0° reflectance factors of pressed polytetrafluoroethylene (PTFE) powder,” , U. S. Dept. of Commerce, July1995.

Butler, J. J.

G. T. Georgiev, J. J. Butler, C. C. Cooksey, L. Ding, and K. J. Thome, “SWIR calibration of spectralon reflectance factor,” Proc. SPIE 8176, 81760W (2011).
[Crossref]

Cooksey, C. C.

G. T. Georgiev, J. J. Butler, C. C. Cooksey, L. Ding, and K. J. Thome, “SWIR calibration of spectralon reflectance factor,” Proc. SPIE 8176, 81760W (2011).
[Crossref]

Ding, L.

G. T. Georgiev, J. J. Butler, C. C. Cooksey, L. Ding, and K. J. Thome, “SWIR calibration of spectralon reflectance factor,” Proc. SPIE 8176, 81760W (2011).
[Crossref]

Dopkiss, M. C.

H. W. Yoon, M. C. Dopkiss, and G. P. Eppeldauer, “Performance comparisons of InGaAs, extended InGaAs, and short-wave HgCdTe detectors between 1  μm and 2.5  μm,” Proc. SPIE 6297, 629703 (2006).
[Crossref]

Early, E. A.

P. Y. Barnes, E. A. Early, and A. C. Parr, “Spectral reflectance,” , U.S. Dept. of Commerce, March1998.

Eckerle, K. L.

Eppeldauer, G. P.

H. W. Yoon, D. W. Allen, G. P. Eppeldauer, and B. K. Tsai, “The extension of the NIST BRDF scale from 1100  nm to 2500  nm,” Proc. SPIE 7452, 745204 (2009).
[Crossref]

H. W. Yoon, M. C. Dopkiss, and G. P. Eppeldauer, “Performance comparisons of InGaAs, extended InGaAs, and short-wave HgCdTe detectors between 1  μm and 2.5  μm,” Proc. SPIE 6297, 629703 (2006).
[Crossref]

Georgiev, G. T.

G. T. Georgiev, J. J. Butler, C. C. Cooksey, L. Ding, and K. J. Thome, “SWIR calibration of spectralon reflectance factor,” Proc. SPIE 8176, 81760W (2011).
[Crossref]

Germer, T. A.

H. J. Patrick, C. J. Zarobila, and T. A. Germer, “The NIST Robotic Optical Scatter Instrument (ROSI) and its application to BRDF measurements of diffuse reflectance standards for remote sensing,” Proc. SPIE 8866, 886615 (2013).
[Crossref]

Gibson, C. E.

H. W. Yoon and C. E. Gibson, “Spectral irradiance calibrations,” , U.S. Dept. of Commerce, July 2011.

Ginsberg, I. W.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, “Geometrical considerations and nomenclature for reflectance,” (1977).

Grusemann, U.

D. Hünerhoff, U. Grusemann, and A. Höpe, “New robot-based gonioreflectometer for measuring spectral diffuse reflection,” Metrologia 43, S11–S16 (2006).
[Crossref]

Hattenburg, A. T.

J. H. Walker, R. D. Saunders, and A. T. Hattenburg, “Spectral radiance calibrations,” , U.S. Dept. of Commerce, Jan. 1987.

Höpe, A.

D. Hünerhoff, U. Grusemann, and A. Höpe, “New robot-based gonioreflectometer for measuring spectral diffuse reflection,” Metrologia 43, S11–S16 (2006).
[Crossref]

Hsia, J. J.

V. R. Weidner and J. J. Hsia, “Reflection properties of pressed polytetrafluoroethylene powder,” J. Opt. Soc. Am. 71, 856–861 (1981).
[Crossref]

W. H. Venable, J. J. Hsia, and V. R. Weidner, “Establishing a scale of directional-hemispherical reflectance factor I: the Van den Akker method,” J. Res. Natl. Bur. Stand. 82, 29–55 (1977).

P. Y. Barnes and J. J. Hsia, “45°/0° reflectance factors of pressed polytetrafluoroethylene (PTFE) powder,” , U. S. Dept. of Commerce, July1995.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, “Geometrical considerations and nomenclature for reflectance,” (1977).

Hünerhoff, D.

D. Hünerhoff, U. Grusemann, and A. Höpe, “New robot-based gonioreflectometer for measuring spectral diffuse reflection,” Metrologia 43, S11–S16 (2006).
[Crossref]

Kuyatt, C. E.

B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” (1994).

Limperis, T.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, “Geometrical considerations and nomenclature for reflectance,” (1977).

Mielenz, K. D.

Nicodemus, F. E.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, “Geometrical considerations and nomenclature for reflectance,” (1977).

Parr, A. C.

P. Y. Barnes, E. A. Early, and A. C. Parr, “Spectral reflectance,” , U.S. Dept. of Commerce, March1998.

Patrick, H. J.

H. J. Patrick, C. J. Zarobila, and T. A. Germer, “The NIST Robotic Optical Scatter Instrument (ROSI) and its application to BRDF measurements of diffuse reflectance standards for remote sensing,” Proc. SPIE 8866, 886615 (2013).
[Crossref]

Richmond, J. C.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, “Geometrical considerations and nomenclature for reflectance,” (1977).

Root, J.

J. Root, Mt. Baker Research L.L.C, 2921 Sylvan Street, Bellingham, Washington 98228-0370 (personal communication, 2014).

Saunders, R. D.

J. H. Walker, R. D. Saunders, and A. T. Hattenburg, “Spectral radiance calibrations,” , U.S. Dept. of Commerce, Jan. 1987.

Taylor, B. N.

B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” (1994).

Thome, K. J.

G. T. Georgiev, J. J. Butler, C. C. Cooksey, L. Ding, and K. J. Thome, “SWIR calibration of spectralon reflectance factor,” Proc. SPIE 8176, 81760W (2011).
[Crossref]

Tsai, B. K.

H. W. Yoon, D. W. Allen, G. P. Eppeldauer, and B. K. Tsai, “The extension of the NIST BRDF scale from 1100  nm to 2500  nm,” Proc. SPIE 7452, 745204 (2009).
[Crossref]

Venable, W. H.

W. H. Venable, J. J. Hsia, and V. R. Weidner, “Establishing a scale of directional-hemispherical reflectance factor I: the Van den Akker method,” J. Res. Natl. Bur. Stand. 82, 29–55 (1977).

Walker, J. H.

J. H. Walker, R. D. Saunders, and A. T. Hattenburg, “Spectral radiance calibrations,” , U.S. Dept. of Commerce, Jan. 1987.

Weidner, V. R.

V. R. Weidner and J. J. Hsia, “Reflection properties of pressed polytetrafluoroethylene powder,” J. Opt. Soc. Am. 71, 856–861 (1981).
[Crossref]

W. H. Venable, J. J. Hsia, and V. R. Weidner, “Establishing a scale of directional-hemispherical reflectance factor I: the Van den Akker method,” J. Res. Natl. Bur. Stand. 82, 29–55 (1977).

Yoon, H. W.

H. W. Yoon, D. W. Allen, G. P. Eppeldauer, and B. K. Tsai, “The extension of the NIST BRDF scale from 1100  nm to 2500  nm,” Proc. SPIE 7452, 745204 (2009).
[Crossref]

H. W. Yoon, M. C. Dopkiss, and G. P. Eppeldauer, “Performance comparisons of InGaAs, extended InGaAs, and short-wave HgCdTe detectors between 1  μm and 2.5  μm,” Proc. SPIE 6297, 629703 (2006).
[Crossref]

H. W. Yoon and C. E. Gibson, “Spectral irradiance calibrations,” , U.S. Dept. of Commerce, July 2011.

Zarobila, C. J.

H. J. Patrick, C. J. Zarobila, and T. A. Germer, “The NIST Robotic Optical Scatter Instrument (ROSI) and its application to BRDF measurements of diffuse reflectance standards for remote sensing,” Proc. SPIE 8866, 886615 (2013).
[Crossref]

Appl. Opt. (1)

J. Opt. Soc. Am. (1)

J. Res. Natl. Bur. Stand. (1)

W. H. Venable, J. J. Hsia, and V. R. Weidner, “Establishing a scale of directional-hemispherical reflectance factor I: the Van den Akker method,” J. Res. Natl. Bur. Stand. 82, 29–55 (1977).

Metrologia (1)

D. Hünerhoff, U. Grusemann, and A. Höpe, “New robot-based gonioreflectometer for measuring spectral diffuse reflection,” Metrologia 43, S11–S16 (2006).
[Crossref]

Proc. SPIE (4)

G. T. Georgiev, J. J. Butler, C. C. Cooksey, L. Ding, and K. J. Thome, “SWIR calibration of spectralon reflectance factor,” Proc. SPIE 8176, 81760W (2011).
[Crossref]

H. J. Patrick, C. J. Zarobila, and T. A. Germer, “The NIST Robotic Optical Scatter Instrument (ROSI) and its application to BRDF measurements of diffuse reflectance standards for remote sensing,” Proc. SPIE 8866, 886615 (2013).
[Crossref]

H. W. Yoon, D. W. Allen, G. P. Eppeldauer, and B. K. Tsai, “The extension of the NIST BRDF scale from 1100  nm to 2500  nm,” Proc. SPIE 7452, 745204 (2009).
[Crossref]

H. W. Yoon, M. C. Dopkiss, and G. P. Eppeldauer, “Performance comparisons of InGaAs, extended InGaAs, and short-wave HgCdTe detectors between 1  μm and 2.5  μm,” Proc. SPIE 6297, 629703 (2006).
[Crossref]

Other (10)

J. H. Walker, R. D. Saunders, and A. T. Hattenburg, “Spectral radiance calibrations,” , U.S. Dept. of Commerce, Jan. 1987.

H. W. Yoon and C. E. Gibson, “Spectral irradiance calibrations,” , U.S. Dept. of Commerce, July 2011.

JCBM 100:2008, “Evaluation of measurement data: guide to the expression of uncertainty in measurement,” http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf (12January2014

B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” (1994).

P. Y. Barnes, E. A. Early, and A. C. Parr, “Spectral reflectance,” , U.S. Dept. of Commerce, March1998.

J. Root, Mt. Baker Research L.L.C, 2921 Sylvan Street, Bellingham, Washington 98228-0370 (personal communication, 2014).

References are made to certain commercially available products in this paper to adequately specify the experimental procedures involved. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that these products are the best for the purpose specified.

“NIST/SEMATECH e-Handbook of Statistical Methods,” http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd132.htm (accessed 6February 2015).

P. Y. Barnes and J. J. Hsia, “45°/0° reflectance factors of pressed polytetrafluoroethylene (PTFE) powder,” , U. S. Dept. of Commerce, July1995.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, “Geometrical considerations and nomenclature for reflectance,” (1977).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Measurement scheme of STARR. The illuminator, consisting of the lamp-based source and monochromator, is not shown for simplification.
Fig. 2.
Fig. 2. Measurement scheme of the ISRF.
Fig. 3.
Fig. 3. Plot of 0/45 reflectance factors with expanded uncertainties (k=2) for a sintered PTFE standard obtained using STARR and ISRF.
Fig. 4.
Fig. 4. 0/45 spectral reflectance factor R as a function of wavelength λ of sintered PTFE, pressed PTFE, and ceramic samples. The inset depicts the shortwave infrared region in finer detail.
Fig. 5.
Fig. 5. Ratio R0/45/R6/di of spectral reflectance factor obtained using the 0/45 geometry to that obtained using the 6/di geometry as a function of wavelength λ of sintered PTFE, pressed PTFE, and ceramic samples. (The scale for this figure was chosen to depict the overall trend of the ratios across the spectral region; consequently, the ratio for the ceramic sample at 250 nm is beyond the scale of this figure.)
Fig. 6.
Fig. 6. Linear least squares fits of the ratio R0/45/R6/di of spectral reflectance factor obtained using the 0/45 geometry to that obtained using the 6/di geometry as a function of wavelength λ of sintered PTFE, pressed PTFE, and ceramic samples and their respective prediction bands (shaded areas).

Tables (3)

Tables Icon

Table 1. Uncertainty Budget for 0/45 Reflectance Factor Values Obtained Using STARR with an Ex-InGaAs Radiometer

Tables Icon

Table 2. Expanded Uncertainty (k=2) of the 0/45 Spectral Reflectance of Sintered PTFE, Pressed PTFE, and Ceramic Samples

Tables Icon

Table 3. Coefficients for the Linear Least Squares Fits of the Ratio R0/45/R6/di for the Wavelength Range 400 to 2500 nm of Sintered PTFE, Pressed PTFE, and Ceramic Samples

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R(λ,σ)=π·d2A·cosθr·Sr(λ,σ)Si(λ,σ)·η,
R(λ)=π·LrEi·η,
R(λ)=S(λ)Sw(λ)·Sw,s(λ)Ss(λ)·Rs(λ),

Metrics