Abstract

In this paper, we propose a novel object tracking method that can work well in challenging scenarios such as appearance changes, motion blurs, and especially partial occlusions and noise. Our method applies bilateral two-dimensional principal component analysis (Bi-2DPCA) for efficient object modeling and real-time computation requirement. An incremental Bi-2DPCA learning algorithm is proposed for characterizing the appearance changes of newly tracked objects. Also, to account for noise and occlusions, a sparse structure is introduced into our Bi-2DPCA object representation model. With this sparse structure, the appearance of an object can be represented by a linear combination of basis images and an additional noise image. The noise image, which indicates the location of noise and occlusions, can be used to effectively eliminate the influence caused by noise and occlusions and lead to a robust tracker. Instead of the reconstruction error commonly used in eigen-based tracking methods, a more accurate method is adopted for the computation of observation likelihood. The method is based on the energy distribution of coefficient matrix projected by Bi-2DPCA. Experimental results on challenging image sequences demonstrate the effectiveness of the proposed tracking method.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Robust object tracking based on local discriminative sparse representation

Xin Wang, Siqiu Shen, Chen Ning, Yuzhen Zhang, and Guofang Lv
J. Opt. Soc. Am. A 34(4) 533-544 (2017)

Real-time infrared target tracking based on ℓ1 minimization and compressive features

Ying Li, Pengcheng Li, and Qiang Shen
Appl. Opt. 53(28) 6518-6526 (2014)

Oversaturated part-based visual tracking via spatio-temporal context learning

Wei Liu, Jicheng Li, Zhiguang Shi, Xiaotian Chen, and Xiao Chen
Appl. Opt. 55(25) 6960-6968 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (32)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription