Abstract

We propose a method for small displacement measurement based on the angle deviation to phase change transformation. The phase change of common-path heterodyne interferometry due to the angle deviation of incidence of a light at interfaces caused by the displacement is detected by a lock-in amplifier. To obtain more accurate results we used an angular amplifier to increase the angle deviation and utilized a surface plasmon resonance (SPR) sensor to enhance the performance of phase detection. When a translator moves one of two face-to-face plane mirrors at an end and then rotates it a small angle, a light is incident onto the mirrors and reflected N times. The outgoing light is also deflected N times of the angle and incident into a SPR sensor. Thus the phase shift due to the angle deviation is amplified N times. The accumulated phase shift is proportional to the amplified angle deviation and displacement. Therefore, the phase change is obtained and the displacement is measured. The amount of movement required can be as low as 0.13 μm without an SPR sensor or 0.08 μm with an SPR sensor. The maximum measurement range can reach 1000 μm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Small-angle measurement based on surface-plasmon resonance and the use of magneto-optical modulation

Jihua Guo, Zhaoming Zhu, and Weimin Deng
Appl. Opt. 38(31) 6550-6555 (1999)

Displacement measurement using a wavelength-phase-shifting grating interferometer

Ju-Yi Lee and Geng-An Jiang
Opt. Express 21(21) 25553-25564 (2013)

Small-displacement sensing system based on multiple total internal reflections in heterodyne interferometry

Shinn-Fwu Wang, Ming-Hung Chiu, Wei-Wu Chen, Fu-Hsi Kao, and Rong-Seng Chang
Appl. Opt. 48(13) 2566-2573 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription