Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Analysis of the effects of applying external fields and device dimensions alterations on GaAs/AlGaAs multiple quantum well slow light devices based on excitonic population oscillation

Not Accessible

Your library or personal account may give you access

Abstract

This paper demonstrates the effects of applying magnetic and electric fields and physical dimensions alterations on AlGaAs/GaAs multiple quantum well (QW) slow light devices. Physical parameters include quantum well sizes and number of quantum wells. To the best of our knowledge, this is the first analysis of the effects of both applying magnetic/electric fields and physical parameters alterations and the first suggestion for matching the prefabrication and post fabrication tuning of the slow light devices based on excitonic population oscillations. The aim of our theoretical analysis is controlling the optical properties such as central frequency, bandwidth, and slow down factor (SDF) in slow light devices based on excitonic population oscillation to achieve better tuning. To reach these purposes, first we investigate the quantum well size and number of quantum wells alteration effects. Next, we analyze the effects of applying magnetic and electric fields to the multiple quantum well structure, separately. Finally, physical parameters and applied external fields are changed for measuring frequency shift and SDF for coherent population oscillation slow light devices. The results show the available central frequency shifts in about 1.6 THz at best. Also the SDF value improvement is about one order of magnitude. These results will be applicable for optical nonlinearity enhancements, all-optical signal processing, optical communications, all-optical switches, optical modulators, and variable true delays.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Room temperature slow light in a quantum-well waveguide via coherent population oscillation

Phedon Palinginis, Forrest Sedgwick, Shanna Crankshaw, Michael Moewe, and Connie J. Chang-Hasnain
Opt. Express 13(24) 9909-9915 (2005)

Electromagnetically-induced transparency and slow light in GaAs/AlGaAs multiple quantum wells in a transient regime

Seong-Min Ma, Hua Xu, and Byoung Seung Ham
Opt. Express 17(17) 14902-14908 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (18)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved