M. Han, Y. Lu, and J. Tian, “Fiber-optic temperature sensor using a Fabry-Perot cavity filled with gas of variable pressure,” IEEE Photon. Technol. Lett. 26, 757–760 (2014).
[Crossref]
F. Ye, Y. W. Zhang, B. Qi, and L. Qian, “Frequency-shifted interferometry—a versatile fiber-optic sensing technique,” Sensors 14, 10977–11000 (2014).
Y. J. Zhao, J. Chang, J. S. Ni, Q. P. Wang, T. Y. Liu, C. Wang, P. P. Wang, G. P. Lv, and G. D. Peng, “Novel gas sensor combined active fiber loop ring-down and dual wavelengths differential absorption method,” Opt. Express 22, 11244–11253 (2014).
[Crossref]
Y. Zhao, D. Wang, and R. Lv, “A novel optical fiber temperature sensor based on Fabry-Perot cavity,” Microwave Opt. Technol. Lett. 55, 2487–2490 (2013).
H. Lin, L. Ma, Z. Hu, Q. Yao, and Y. Hu, “Multiple reflections induced crosstalk in inline TDM fiber Fabry-Perot sensor system utilizing phase generated carrier scheme,” J. Lightwave Technol. 31, 2651–2658 (2013).
S. Niu, Y. Liao, Q. Yao, and Y. Hu, “Resolution and sensitivity enhancements in strong grating based fiber Fabry-Perot interferometric sensor system utilizing multiple reflection beams,” Opt. Commun. 285, 2826–2831 (2012).
[Crossref]
Z. Guo, W. Li, and T. Liu, “Optical fiber ultrasonic sensor networks based on WDM and TDM,” J. Phys. 276, 1–6 (2011).
F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber Bragg grating array,” IEEE Photon. Technol. Lett. 20, 1488–1490 (2008).
[Crossref]
J. Zhao, Y. Shi, N. Shan, and X. Yuan, “Stabilized fiber-optic extrinsic Fabry-Perot sensor system for acoustic emission measurement,” Opt. Laser Technol. 40, 874–880 (2008).
[Crossref]
Z. Shen, J. Zhao, and X. Zhang, “Frequency-division multiplexing technique of fiber grating Fabry-Perot sensors,” Acta Opt. Sin. 27, 1173–1177 (2007) (in Chinese).
B. Qi, A. Tausz, L. Qian, and H. K. Lo, “High-resolution, large dynamic range fiber length measurement based on a frequency-shifted asymmetric Sagnac interferometer,” Opt. Lett. 30, 3287–3289 (2005).
[Crossref]
F. Shen and A. B. Wang, “Frequency estimation based signal processing algorithm for white light optical fiber Fabry–Perot interferometers,” Appl. Opt. 44, 5206–5214 (2005).
[Crossref]
M. Singh, C. J. Tuck, and G. F. Fernando, “Multiplexed optical fiber Fabry-Perot sensors for strain metrology,” Smart Material Structures 8, 549–553 (1999).
S. C. Kaddu, S. F. Collins, and D. J. Booth, “Multiplexed intrinsic optical fibre Fabry-Perot temperature and strain sensors addressed using white light interferometry,” Meas. Sci. Technol. 10, 416–420 (1999).
[Crossref]
G. Stewart, C. Tandy, D. Moodie, M. A. Morante, and F. Dong, “Design of a fibre optic multi-point sensor for gas detection,” Sens. Actuators B 51, 227–232 (1998).
[Crossref]
B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection-from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
[Crossref]
S. C. Kaddu, S. F. Collins, and D. J. Booth, “Multiplexed intrinsic optical fibre Fabry-Perot temperature and strain sensors addressed using white light interferometry,” Meas. Sci. Technol. 10, 416–420 (1999).
[Crossref]
Y. J. Zhao, J. Chang, J. S. Ni, Q. P. Wang, T. Y. Liu, C. Wang, P. P. Wang, G. P. Lv, and G. D. Peng, “Novel gas sensor combined active fiber loop ring-down and dual wavelengths differential absorption method,” Opt. Express 22, 11244–11253 (2014).
[Crossref]
S. C. Kaddu, S. F. Collins, and D. J. Booth, “Multiplexed intrinsic optical fibre Fabry-Perot temperature and strain sensors addressed using white light interferometry,” Meas. Sci. Technol. 10, 416–420 (1999).
[Crossref]
B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection-from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
[Crossref]
G. Stewart, C. Tandy, D. Moodie, M. A. Morante, and F. Dong, “Design of a fibre optic multi-point sensor for gas detection,” Sens. Actuators B 51, 227–232 (1998).
[Crossref]
B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection-from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
[Crossref]
M. Singh, C. J. Tuck, and G. F. Fernando, “Multiplexed optical fiber Fabry-Perot sensors for strain metrology,” Smart Material Structures 8, 549–553 (1999).
Z. Guo, W. Li, and T. Liu, “Optical fiber ultrasonic sensor networks based on WDM and TDM,” J. Phys. 276, 1–6 (2011).
M. Han, Y. Lu, and J. Tian, “Fiber-optic temperature sensor using a Fabry-Perot cavity filled with gas of variable pressure,” IEEE Photon. Technol. Lett. 26, 757–760 (2014).
[Crossref]
H. Lin, L. Ma, Z. Hu, Q. Yao, and Y. Hu, “Multiple reflections induced crosstalk in inline TDM fiber Fabry-Perot sensor system utilizing phase generated carrier scheme,” J. Lightwave Technol. 31, 2651–2658 (2013).
S. Niu, Y. Liao, Q. Yao, and Y. Hu, “Resolution and sensitivity enhancements in strong grating based fiber Fabry-Perot interferometric sensor system utilizing multiple reflection beams,” Opt. Commun. 285, 2826–2831 (2012).
[Crossref]
H. Lin, L. Ma, Z. Hu, Q. Yao, and Y. Hu, “Multiple reflections induced crosstalk in inline TDM fiber Fabry-Perot sensor system utilizing phase generated carrier scheme,” J. Lightwave Technol. 31, 2651–2658 (2013).
S. C. Kaddu, S. F. Collins, and D. J. Booth, “Multiplexed intrinsic optical fibre Fabry-Perot temperature and strain sensors addressed using white light interferometry,” Meas. Sci. Technol. 10, 416–420 (1999).
[Crossref]
Z. Guo, W. Li, and T. Liu, “Optical fiber ultrasonic sensor networks based on WDM and TDM,” J. Phys. 276, 1–6 (2011).
S. Niu, Y. Liao, Q. Yao, and Y. Hu, “Resolution and sensitivity enhancements in strong grating based fiber Fabry-Perot interferometric sensor system utilizing multiple reflection beams,” Opt. Commun. 285, 2826–2831 (2012).
[Crossref]
H. Lin, L. Ma, Z. Hu, Q. Yao, and Y. Hu, “Multiple reflections induced crosstalk in inline TDM fiber Fabry-Perot sensor system utilizing phase generated carrier scheme,” J. Lightwave Technol. 31, 2651–2658 (2013).
Z. Guo, W. Li, and T. Liu, “Optical fiber ultrasonic sensor networks based on WDM and TDM,” J. Phys. 276, 1–6 (2011).
Y. J. Zhao, J. Chang, J. S. Ni, Q. P. Wang, T. Y. Liu, C. Wang, P. P. Wang, G. P. Lv, and G. D. Peng, “Novel gas sensor combined active fiber loop ring-down and dual wavelengths differential absorption method,” Opt. Express 22, 11244–11253 (2014).
[Crossref]
F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber Bragg grating array,” IEEE Photon. Technol. Lett. 20, 1488–1490 (2008).
[Crossref]
M. Han, Y. Lu, and J. Tian, “Fiber-optic temperature sensor using a Fabry-Perot cavity filled with gas of variable pressure,” IEEE Photon. Technol. Lett. 26, 757–760 (2014).
[Crossref]
Y. J. Zhao, J. Chang, J. S. Ni, Q. P. Wang, T. Y. Liu, C. Wang, P. P. Wang, G. P. Lv, and G. D. Peng, “Novel gas sensor combined active fiber loop ring-down and dual wavelengths differential absorption method,” Opt. Express 22, 11244–11253 (2014).
[Crossref]
Y. Zhao, D. Wang, and R. Lv, “A novel optical fiber temperature sensor based on Fabry-Perot cavity,” Microwave Opt. Technol. Lett. 55, 2487–2490 (2013).
H. Lin, L. Ma, Z. Hu, Q. Yao, and Y. Hu, “Multiple reflections induced crosstalk in inline TDM fiber Fabry-Perot sensor system utilizing phase generated carrier scheme,” J. Lightwave Technol. 31, 2651–2658 (2013).
G. Stewart, C. Tandy, D. Moodie, M. A. Morante, and F. Dong, “Design of a fibre optic multi-point sensor for gas detection,” Sens. Actuators B 51, 227–232 (1998).
[Crossref]
B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection-from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
[Crossref]
G. Stewart, C. Tandy, D. Moodie, M. A. Morante, and F. Dong, “Design of a fibre optic multi-point sensor for gas detection,” Sens. Actuators B 51, 227–232 (1998).
[Crossref]
Y. J. Zhao, J. Chang, J. S. Ni, Q. P. Wang, T. Y. Liu, C. Wang, P. P. Wang, G. P. Lv, and G. D. Peng, “Novel gas sensor combined active fiber loop ring-down and dual wavelengths differential absorption method,” Opt. Express 22, 11244–11253 (2014).
[Crossref]
S. Niu, Y. Liao, Q. Yao, and Y. Hu, “Resolution and sensitivity enhancements in strong grating based fiber Fabry-Perot interferometric sensor system utilizing multiple reflection beams,” Opt. Commun. 285, 2826–2831 (2012).
[Crossref]
Y. J. Zhao, J. Chang, J. S. Ni, Q. P. Wang, T. Y. Liu, C. Wang, P. P. Wang, G. P. Lv, and G. D. Peng, “Novel gas sensor combined active fiber loop ring-down and dual wavelengths differential absorption method,” Opt. Express 22, 11244–11253 (2014).
[Crossref]
F. Ye, Y. W. Zhang, B. Qi, and L. Qian, “Frequency-shifted interferometry—a versatile fiber-optic sensing technique,” Sensors 14, 10977–11000 (2014).
F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing using frequency-shifted interferometry,” J. Lightwave Technol. 27, 5356–5364 (2009).
[Crossref]
F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber Bragg grating array,” IEEE Photon. Technol. Lett. 20, 1488–1490 (2008).
[Crossref]
B. Qi, A. Tausz, L. Qian, and H. K. Lo, “High-resolution, large dynamic range fiber length measurement based on a frequency-shifted asymmetric Sagnac interferometer,” Opt. Lett. 30, 3287–3289 (2005).
[Crossref]
F. Ye, Y. W. Zhang, B. Qi, and L. Qian, “Frequency-shifted interferometry—a versatile fiber-optic sensing technique,” Sensors 14, 10977–11000 (2014).
F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing using frequency-shifted interferometry,” J. Lightwave Technol. 27, 5356–5364 (2009).
[Crossref]
F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber Bragg grating array,” IEEE Photon. Technol. Lett. 20, 1488–1490 (2008).
[Crossref]
B. Qi, A. Tausz, L. Qian, and H. K. Lo, “High-resolution, large dynamic range fiber length measurement based on a frequency-shifted asymmetric Sagnac interferometer,” Opt. Lett. 30, 3287–3289 (2005).
[Crossref]
J. Zhao, Y. Shi, N. Shan, and X. Yuan, “Stabilized fiber-optic extrinsic Fabry-Perot sensor system for acoustic emission measurement,” Opt. Laser Technol. 40, 874–880 (2008).
[Crossref]
Z. Shen, J. Zhao, and X. Zhang, “Frequency-division multiplexing technique of fiber grating Fabry-Perot sensors,” Acta Opt. Sin. 27, 1173–1177 (2007) (in Chinese).
J. Zhao, Y. Shi, N. Shan, and X. Yuan, “Stabilized fiber-optic extrinsic Fabry-Perot sensor system for acoustic emission measurement,” Opt. Laser Technol. 40, 874–880 (2008).
[Crossref]
M. Singh, C. J. Tuck, and G. F. Fernando, “Multiplexed optical fiber Fabry-Perot sensors for strain metrology,” Smart Material Structures 8, 549–553 (1999).
B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection-from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
[Crossref]
G. Stewart, C. Tandy, D. Moodie, M. A. Morante, and F. Dong, “Design of a fibre optic multi-point sensor for gas detection,” Sens. Actuators B 51, 227–232 (1998).
[Crossref]
G. Stewart, C. Tandy, D. Moodie, M. A. Morante, and F. Dong, “Design of a fibre optic multi-point sensor for gas detection,” Sens. Actuators B 51, 227–232 (1998).
[Crossref]
B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection-from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
[Crossref]
M. Han, Y. Lu, and J. Tian, “Fiber-optic temperature sensor using a Fabry-Perot cavity filled with gas of variable pressure,” IEEE Photon. Technol. Lett. 26, 757–760 (2014).
[Crossref]
M. Singh, C. J. Tuck, and G. F. Fernando, “Multiplexed optical fiber Fabry-Perot sensors for strain metrology,” Smart Material Structures 8, 549–553 (1999).
Y. J. Zhao, J. Chang, J. S. Ni, Q. P. Wang, T. Y. Liu, C. Wang, P. P. Wang, G. P. Lv, and G. D. Peng, “Novel gas sensor combined active fiber loop ring-down and dual wavelengths differential absorption method,” Opt. Express 22, 11244–11253 (2014).
[Crossref]
Y. Zhao, D. Wang, and R. Lv, “A novel optical fiber temperature sensor based on Fabry-Perot cavity,” Microwave Opt. Technol. Lett. 55, 2487–2490 (2013).
Y. J. Zhao, J. Chang, J. S. Ni, Q. P. Wang, T. Y. Liu, C. Wang, P. P. Wang, G. P. Lv, and G. D. Peng, “Novel gas sensor combined active fiber loop ring-down and dual wavelengths differential absorption method,” Opt. Express 22, 11244–11253 (2014).
[Crossref]
Y. J. Zhao, J. Chang, J. S. Ni, Q. P. Wang, T. Y. Liu, C. Wang, P. P. Wang, G. P. Lv, and G. D. Peng, “Novel gas sensor combined active fiber loop ring-down and dual wavelengths differential absorption method,” Opt. Express 22, 11244–11253 (2014).
[Crossref]
H. Lin, L. Ma, Z. Hu, Q. Yao, and Y. Hu, “Multiple reflections induced crosstalk in inline TDM fiber Fabry-Perot sensor system utilizing phase generated carrier scheme,” J. Lightwave Technol. 31, 2651–2658 (2013).
S. Niu, Y. Liao, Q. Yao, and Y. Hu, “Resolution and sensitivity enhancements in strong grating based fiber Fabry-Perot interferometric sensor system utilizing multiple reflection beams,” Opt. Commun. 285, 2826–2831 (2012).
[Crossref]
F. Ye, Y. W. Zhang, B. Qi, and L. Qian, “Frequency-shifted interferometry—a versatile fiber-optic sensing technique,” Sensors 14, 10977–11000 (2014).
F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing using frequency-shifted interferometry,” J. Lightwave Technol. 27, 5356–5364 (2009).
[Crossref]
F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber Bragg grating array,” IEEE Photon. Technol. Lett. 20, 1488–1490 (2008).
[Crossref]
F. Ye, “Frequency-shifted interferometry for fiber-optic sensing,” Ph.D. dissertation (University of Toronto, 2013).
J. Zhao, Y. Shi, N. Shan, and X. Yuan, “Stabilized fiber-optic extrinsic Fabry-Perot sensor system for acoustic emission measurement,” Opt. Laser Technol. 40, 874–880 (2008).
[Crossref]
Z. Shen, J. Zhao, and X. Zhang, “Frequency-division multiplexing technique of fiber grating Fabry-Perot sensors,” Acta Opt. Sin. 27, 1173–1177 (2007) (in Chinese).
F. Ye, Y. W. Zhang, B. Qi, and L. Qian, “Frequency-shifted interferometry—a versatile fiber-optic sensing technique,” Sensors 14, 10977–11000 (2014).
J. Zhao, Y. Shi, N. Shan, and X. Yuan, “Stabilized fiber-optic extrinsic Fabry-Perot sensor system for acoustic emission measurement,” Opt. Laser Technol. 40, 874–880 (2008).
[Crossref]
Z. Shen, J. Zhao, and X. Zhang, “Frequency-division multiplexing technique of fiber grating Fabry-Perot sensors,” Acta Opt. Sin. 27, 1173–1177 (2007) (in Chinese).
Y. Zhao, D. Wang, and R. Lv, “A novel optical fiber temperature sensor based on Fabry-Perot cavity,” Microwave Opt. Technol. Lett. 55, 2487–2490 (2013).
Y. J. Zhao, J. Chang, J. S. Ni, Q. P. Wang, T. Y. Liu, C. Wang, P. P. Wang, G. P. Lv, and G. D. Peng, “Novel gas sensor combined active fiber loop ring-down and dual wavelengths differential absorption method,” Opt. Express 22, 11244–11253 (2014).
[Crossref]
Z. Shen, J. Zhao, and X. Zhang, “Frequency-division multiplexing technique of fiber grating Fabry-Perot sensors,” Acta Opt. Sin. 27, 1173–1177 (2007) (in Chinese).
F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber Bragg grating array,” IEEE Photon. Technol. Lett. 20, 1488–1490 (2008).
[Crossref]
M. Han, Y. Lu, and J. Tian, “Fiber-optic temperature sensor using a Fabry-Perot cavity filled with gas of variable pressure,” IEEE Photon. Technol. Lett. 26, 757–760 (2014).
[Crossref]
H. Lin, L. Ma, Z. Hu, Q. Yao, and Y. Hu, “Multiple reflections induced crosstalk in inline TDM fiber Fabry-Perot sensor system utilizing phase generated carrier scheme,” J. Lightwave Technol. 31, 2651–2658 (2013).
F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing using frequency-shifted interferometry,” J. Lightwave Technol. 27, 5356–5364 (2009).
[Crossref]
Z. Guo, W. Li, and T. Liu, “Optical fiber ultrasonic sensor networks based on WDM and TDM,” J. Phys. 276, 1–6 (2011).
S. C. Kaddu, S. F. Collins, and D. J. Booth, “Multiplexed intrinsic optical fibre Fabry-Perot temperature and strain sensors addressed using white light interferometry,” Meas. Sci. Technol. 10, 416–420 (1999).
[Crossref]
Y. Zhao, D. Wang, and R. Lv, “A novel optical fiber temperature sensor based on Fabry-Perot cavity,” Microwave Opt. Technol. Lett. 55, 2487–2490 (2013).
S. Niu, Y. Liao, Q. Yao, and Y. Hu, “Resolution and sensitivity enhancements in strong grating based fiber Fabry-Perot interferometric sensor system utilizing multiple reflection beams,” Opt. Commun. 285, 2826–2831 (2012).
[Crossref]
Y. J. Zhao, J. Chang, J. S. Ni, Q. P. Wang, T. Y. Liu, C. Wang, P. P. Wang, G. P. Lv, and G. D. Peng, “Novel gas sensor combined active fiber loop ring-down and dual wavelengths differential absorption method,” Opt. Express 22, 11244–11253 (2014).
[Crossref]
J. Zhao, Y. Shi, N. Shan, and X. Yuan, “Stabilized fiber-optic extrinsic Fabry-Perot sensor system for acoustic emission measurement,” Opt. Laser Technol. 40, 874–880 (2008).
[Crossref]
G. Stewart, C. Tandy, D. Moodie, M. A. Morante, and F. Dong, “Design of a fibre optic multi-point sensor for gas detection,” Sens. Actuators B 51, 227–232 (1998).
[Crossref]
B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection-from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
[Crossref]
F. Ye, Y. W. Zhang, B. Qi, and L. Qian, “Frequency-shifted interferometry—a versatile fiber-optic sensing technique,” Sensors 14, 10977–11000 (2014).
M. Singh, C. J. Tuck, and G. F. Fernando, “Multiplexed optical fiber Fabry-Perot sensors for strain metrology,” Smart Material Structures 8, 549–553 (1999).
F. Ye, “Frequency-shifted interferometry for fiber-optic sensing,” Ph.D. dissertation (University of Toronto, 2013).
F. Shen, “UV-induced intrinsic Fabry-Perot interferometric fiber sensors and their multiplexing for quasi-distributed temperature and strain sensing,” Ph.D. dissertation (Virginia Polytechnic Institute and State University, 2006).