Abstract

Experimental and theoretical research on hybrid multiplexing for fiber-optic Fabry–Perot (F-P) sensors based on frequency-shifted interferometry is presented. Four F-P sensors multiplexed in a hybrid configuration were experimentally investigated. The location of each multiplexed sensor was retrieved by performing the fast Fourier transform, and the reflection spectrum of each sensor was also obtained in spite of the spectral overlap, which was consistent with the results measured by an optical spectrum analyzer. With theoretical modeling, the maximum sensor number of a two-channel hybrid multiplexing system reaches 26 with crosstalk of less than 50dB and a maximum frequency-domain signal-to-noise ratio (SNR) of 25dB, when the source power is 2 mW and the sensor separation is optimal, i.e., 40 m. And the sensor number is almost twice that multiplexed by a serial system under the same conditions. An SNR improvement of 3.9 dB can be achieved by using a Hamming window in a noise-free system compared with a Hanning window. In addition, we applied the experimental multiplexing system to a strain sensing test. The cavity lengths and cavity-length shifts of the four F-P sensors were demodulated, which was consistent with the actual situation. It provides a new feasible method to multiplex F-P sensors at large scale.

Full Article  |  PDF Article
OSA Recommended Articles
Large-capacity multiplexing of near-identical weak fiber Bragg gratings using frequency-shifted interferometry

Yiwen Ou, Ciming Zhou, Li Qian, Dian Fan, Chunfu Cheng, and Huiyong Guo
Opt. Express 23(24) 31484-31495 (2015)

Multichannel continuous-wave fiber cavity ringdown gas sensing utilizing frequency-shifted interferometry

Z. Y. Yang, C. F. Cheng, H. Lv, Z. H. Chen, J. X. Chen, and Y. W. Ou
Appl. Opt. 57(35) 10224-10229 (2018)

Reflectometry based on a frequency-shifted interferometer using sideband interference

Bing Qi, Fei Ye, Li Qian, and Hoi-Kwong Lo
Opt. Lett. 38(7) 1083-1085 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Han, Y. Lu, and J. Tian, “Fiber-optic temperature sensor using a Fabry-Perot cavity filled with gas of variable pressure,” IEEE Photon. Technol. Lett. 26, 757–760 (2014).
    [Crossref]
  2. Y. Zhao, D. Wang, and R. Lv, “A novel optical fiber temperature sensor based on Fabry-Perot cavity,” Microwave Opt. Technol. Lett. 55, 2487–2490 (2013).
  3. S. Niu, Y. Liao, Q. Yao, and Y. Hu, “Resolution and sensitivity enhancements in strong grating based fiber Fabry-Perot interferometric sensor system utilizing multiple reflection beams,” Opt. Commun. 285, 2826–2831 (2012).
    [Crossref]
  4. Z. Guo, W. Li, and T. Liu, “Optical fiber ultrasonic sensor networks based on WDM and TDM,” J. Phys. 276, 1–6 (2011).
  5. J. Zhao, Y. Shi, N. Shan, and X. Yuan, “Stabilized fiber-optic extrinsic Fabry-Perot sensor system for acoustic emission measurement,” Opt. Laser Technol. 40, 874–880 (2008).
    [Crossref]
  6. H. Lin, L. Ma, Z. Hu, Q. Yao, and Y. Hu, “Multiple reflections induced crosstalk in inline TDM fiber Fabry-Perot sensor system utilizing phase generated carrier scheme,” J. Lightwave Technol. 31, 2651–2658 (2013).
  7. G. Stewart, C. Tandy, D. Moodie, M. A. Morante, and F. Dong, “Design of a fibre optic multi-point sensor for gas detection,” Sens. Actuators B 51, 227–232 (1998).
    [Crossref]
  8. B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection-from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
    [Crossref]
  9. Z. Shen, J. Zhao, and X. Zhang, “Frequency-division multiplexing technique of fiber grating Fabry-Perot sensors,” Acta Opt. Sin. 27, 1173–1177 (2007) (in Chinese).
  10. F. Shen, “UV-induced intrinsic Fabry-Perot interferometric fiber sensors and their multiplexing for quasi-distributed temperature and strain sensing,” Ph.D. dissertation (Virginia Polytechnic Institute and State University, 2006).
  11. M. Singh, C. J. Tuck, and G. F. Fernando, “Multiplexed optical fiber Fabry-Perot sensors for strain metrology,” Smart Material Structures 8, 549–553 (1999).
  12. S. C. Kaddu, S. F. Collins, and D. J. Booth, “Multiplexed intrinsic optical fibre Fabry-Perot temperature and strain sensors addressed using white light interferometry,” Meas. Sci. Technol. 10, 416–420 (1999).
    [Crossref]
  13. B. Qi, A. Tausz, L. Qian, and H. K. Lo, “High-resolution, large dynamic range fiber length measurement based on a frequency-shifted asymmetric Sagnac interferometer,” Opt. Lett. 30, 3287–3289 (2005).
    [Crossref]
  14. F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber Bragg grating array,” IEEE Photon. Technol. Lett. 20, 1488–1490 (2008).
    [Crossref]
  15. F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing using frequency-shifted interferometry,” J. Lightwave Technol. 27, 5356–5364 (2009).
    [Crossref]
  16. F. Ye, “Frequency-shifted interferometry for fiber-optic sensing,” Ph.D. dissertation (University of Toronto, 2013).
  17. F. Ye, Y. W. Zhang, B. Qi, and L. Qian, “Frequency-shifted interferometry—a versatile fiber-optic sensing technique,” Sensors 14, 10977–11000 (2014).
  18. Y. J. Zhao, J. Chang, J. S. Ni, Q. P. Wang, T. Y. Liu, C. Wang, P. P. Wang, G. P. Lv, and G. D. Peng, “Novel gas sensor combined active fiber loop ring-down and dual wavelengths differential absorption method,” Opt. Express 22, 11244–11253 (2014).
    [Crossref]
  19. F. Shen and A. B. Wang, “Frequency estimation based signal processing algorithm for white light optical fiber Fabry–Perot interferometers,” Appl. Opt. 44, 5206–5214 (2005).
    [Crossref]

2014 (3)

M. Han, Y. Lu, and J. Tian, “Fiber-optic temperature sensor using a Fabry-Perot cavity filled with gas of variable pressure,” IEEE Photon. Technol. Lett. 26, 757–760 (2014).
[Crossref]

F. Ye, Y. W. Zhang, B. Qi, and L. Qian, “Frequency-shifted interferometry—a versatile fiber-optic sensing technique,” Sensors 14, 10977–11000 (2014).

Y. J. Zhao, J. Chang, J. S. Ni, Q. P. Wang, T. Y. Liu, C. Wang, P. P. Wang, G. P. Lv, and G. D. Peng, “Novel gas sensor combined active fiber loop ring-down and dual wavelengths differential absorption method,” Opt. Express 22, 11244–11253 (2014).
[Crossref]

2013 (2)

Y. Zhao, D. Wang, and R. Lv, “A novel optical fiber temperature sensor based on Fabry-Perot cavity,” Microwave Opt. Technol. Lett. 55, 2487–2490 (2013).

H. Lin, L. Ma, Z. Hu, Q. Yao, and Y. Hu, “Multiple reflections induced crosstalk in inline TDM fiber Fabry-Perot sensor system utilizing phase generated carrier scheme,” J. Lightwave Technol. 31, 2651–2658 (2013).

2012 (1)

S. Niu, Y. Liao, Q. Yao, and Y. Hu, “Resolution and sensitivity enhancements in strong grating based fiber Fabry-Perot interferometric sensor system utilizing multiple reflection beams,” Opt. Commun. 285, 2826–2831 (2012).
[Crossref]

2011 (1)

Z. Guo, W. Li, and T. Liu, “Optical fiber ultrasonic sensor networks based on WDM and TDM,” J. Phys. 276, 1–6 (2011).

2009 (1)

2008 (2)

F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber Bragg grating array,” IEEE Photon. Technol. Lett. 20, 1488–1490 (2008).
[Crossref]

J. Zhao, Y. Shi, N. Shan, and X. Yuan, “Stabilized fiber-optic extrinsic Fabry-Perot sensor system for acoustic emission measurement,” Opt. Laser Technol. 40, 874–880 (2008).
[Crossref]

2007 (1)

Z. Shen, J. Zhao, and X. Zhang, “Frequency-division multiplexing technique of fiber grating Fabry-Perot sensors,” Acta Opt. Sin. 27, 1173–1177 (2007) (in Chinese).

2005 (2)

1999 (2)

M. Singh, C. J. Tuck, and G. F. Fernando, “Multiplexed optical fiber Fabry-Perot sensors for strain metrology,” Smart Material Structures 8, 549–553 (1999).

S. C. Kaddu, S. F. Collins, and D. J. Booth, “Multiplexed intrinsic optical fibre Fabry-Perot temperature and strain sensors addressed using white light interferometry,” Meas. Sci. Technol. 10, 416–420 (1999).
[Crossref]

1998 (2)

G. Stewart, C. Tandy, D. Moodie, M. A. Morante, and F. Dong, “Design of a fibre optic multi-point sensor for gas detection,” Sens. Actuators B 51, 227–232 (1998).
[Crossref]

B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection-from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
[Crossref]

Booth, D. J.

S. C. Kaddu, S. F. Collins, and D. J. Booth, “Multiplexed intrinsic optical fibre Fabry-Perot temperature and strain sensors addressed using white light interferometry,” Meas. Sci. Technol. 10, 416–420 (1999).
[Crossref]

Chang, J.

Collins, S. F.

S. C. Kaddu, S. F. Collins, and D. J. Booth, “Multiplexed intrinsic optical fibre Fabry-Perot temperature and strain sensors addressed using white light interferometry,” Meas. Sci. Technol. 10, 416–420 (1999).
[Crossref]

Culshaw, B.

B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection-from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
[Crossref]

Dong, F.

G. Stewart, C. Tandy, D. Moodie, M. A. Morante, and F. Dong, “Design of a fibre optic multi-point sensor for gas detection,” Sens. Actuators B 51, 227–232 (1998).
[Crossref]

B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection-from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
[Crossref]

Fernando, G. F.

M. Singh, C. J. Tuck, and G. F. Fernando, “Multiplexed optical fiber Fabry-Perot sensors for strain metrology,” Smart Material Structures 8, 549–553 (1999).

Guo, Z.

Z. Guo, W. Li, and T. Liu, “Optical fiber ultrasonic sensor networks based on WDM and TDM,” J. Phys. 276, 1–6 (2011).

Han, M.

M. Han, Y. Lu, and J. Tian, “Fiber-optic temperature sensor using a Fabry-Perot cavity filled with gas of variable pressure,” IEEE Photon. Technol. Lett. 26, 757–760 (2014).
[Crossref]

Hu, Y.

H. Lin, L. Ma, Z. Hu, Q. Yao, and Y. Hu, “Multiple reflections induced crosstalk in inline TDM fiber Fabry-Perot sensor system utilizing phase generated carrier scheme,” J. Lightwave Technol. 31, 2651–2658 (2013).

S. Niu, Y. Liao, Q. Yao, and Y. Hu, “Resolution and sensitivity enhancements in strong grating based fiber Fabry-Perot interferometric sensor system utilizing multiple reflection beams,” Opt. Commun. 285, 2826–2831 (2012).
[Crossref]

Hu, Z.

H. Lin, L. Ma, Z. Hu, Q. Yao, and Y. Hu, “Multiple reflections induced crosstalk in inline TDM fiber Fabry-Perot sensor system utilizing phase generated carrier scheme,” J. Lightwave Technol. 31, 2651–2658 (2013).

Kaddu, S. C.

S. C. Kaddu, S. F. Collins, and D. J. Booth, “Multiplexed intrinsic optical fibre Fabry-Perot temperature and strain sensors addressed using white light interferometry,” Meas. Sci. Technol. 10, 416–420 (1999).
[Crossref]

Li, W.

Z. Guo, W. Li, and T. Liu, “Optical fiber ultrasonic sensor networks based on WDM and TDM,” J. Phys. 276, 1–6 (2011).

Liao, Y.

S. Niu, Y. Liao, Q. Yao, and Y. Hu, “Resolution and sensitivity enhancements in strong grating based fiber Fabry-Perot interferometric sensor system utilizing multiple reflection beams,” Opt. Commun. 285, 2826–2831 (2012).
[Crossref]

Lin, H.

H. Lin, L. Ma, Z. Hu, Q. Yao, and Y. Hu, “Multiple reflections induced crosstalk in inline TDM fiber Fabry-Perot sensor system utilizing phase generated carrier scheme,” J. Lightwave Technol. 31, 2651–2658 (2013).

Liu, T.

Z. Guo, W. Li, and T. Liu, “Optical fiber ultrasonic sensor networks based on WDM and TDM,” J. Phys. 276, 1–6 (2011).

Liu, T. Y.

Liu, Y.

F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber Bragg grating array,” IEEE Photon. Technol. Lett. 20, 1488–1490 (2008).
[Crossref]

Lo, H. K.

Lu, Y.

M. Han, Y. Lu, and J. Tian, “Fiber-optic temperature sensor using a Fabry-Perot cavity filled with gas of variable pressure,” IEEE Photon. Technol. Lett. 26, 757–760 (2014).
[Crossref]

Lv, G. P.

Lv, R.

Y. Zhao, D. Wang, and R. Lv, “A novel optical fiber temperature sensor based on Fabry-Perot cavity,” Microwave Opt. Technol. Lett. 55, 2487–2490 (2013).

Ma, L.

H. Lin, L. Ma, Z. Hu, Q. Yao, and Y. Hu, “Multiple reflections induced crosstalk in inline TDM fiber Fabry-Perot sensor system utilizing phase generated carrier scheme,” J. Lightwave Technol. 31, 2651–2658 (2013).

Moodie, D.

G. Stewart, C. Tandy, D. Moodie, M. A. Morante, and F. Dong, “Design of a fibre optic multi-point sensor for gas detection,” Sens. Actuators B 51, 227–232 (1998).
[Crossref]

B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection-from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
[Crossref]

Morante, M. A.

G. Stewart, C. Tandy, D. Moodie, M. A. Morante, and F. Dong, “Design of a fibre optic multi-point sensor for gas detection,” Sens. Actuators B 51, 227–232 (1998).
[Crossref]

Ni, J. S.

Niu, S.

S. Niu, Y. Liao, Q. Yao, and Y. Hu, “Resolution and sensitivity enhancements in strong grating based fiber Fabry-Perot interferometric sensor system utilizing multiple reflection beams,” Opt. Commun. 285, 2826–2831 (2012).
[Crossref]

Peng, G. D.

Qi, B.

F. Ye, Y. W. Zhang, B. Qi, and L. Qian, “Frequency-shifted interferometry—a versatile fiber-optic sensing technique,” Sensors 14, 10977–11000 (2014).

F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing using frequency-shifted interferometry,” J. Lightwave Technol. 27, 5356–5364 (2009).
[Crossref]

F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber Bragg grating array,” IEEE Photon. Technol. Lett. 20, 1488–1490 (2008).
[Crossref]

B. Qi, A. Tausz, L. Qian, and H. K. Lo, “High-resolution, large dynamic range fiber length measurement based on a frequency-shifted asymmetric Sagnac interferometer,” Opt. Lett. 30, 3287–3289 (2005).
[Crossref]

Qian, L.

F. Ye, Y. W. Zhang, B. Qi, and L. Qian, “Frequency-shifted interferometry—a versatile fiber-optic sensing technique,” Sensors 14, 10977–11000 (2014).

F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing using frequency-shifted interferometry,” J. Lightwave Technol. 27, 5356–5364 (2009).
[Crossref]

F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber Bragg grating array,” IEEE Photon. Technol. Lett. 20, 1488–1490 (2008).
[Crossref]

B. Qi, A. Tausz, L. Qian, and H. K. Lo, “High-resolution, large dynamic range fiber length measurement based on a frequency-shifted asymmetric Sagnac interferometer,” Opt. Lett. 30, 3287–3289 (2005).
[Crossref]

Shan, N.

J. Zhao, Y. Shi, N. Shan, and X. Yuan, “Stabilized fiber-optic extrinsic Fabry-Perot sensor system for acoustic emission measurement,” Opt. Laser Technol. 40, 874–880 (2008).
[Crossref]

Shen, F.

F. Shen and A. B. Wang, “Frequency estimation based signal processing algorithm for white light optical fiber Fabry–Perot interferometers,” Appl. Opt. 44, 5206–5214 (2005).
[Crossref]

F. Shen, “UV-induced intrinsic Fabry-Perot interferometric fiber sensors and their multiplexing for quasi-distributed temperature and strain sensing,” Ph.D. dissertation (Virginia Polytechnic Institute and State University, 2006).

Shen, Z.

Z. Shen, J. Zhao, and X. Zhang, “Frequency-division multiplexing technique of fiber grating Fabry-Perot sensors,” Acta Opt. Sin. 27, 1173–1177 (2007) (in Chinese).

Shi, Y.

J. Zhao, Y. Shi, N. Shan, and X. Yuan, “Stabilized fiber-optic extrinsic Fabry-Perot sensor system for acoustic emission measurement,” Opt. Laser Technol. 40, 874–880 (2008).
[Crossref]

Singh, M.

M. Singh, C. J. Tuck, and G. F. Fernando, “Multiplexed optical fiber Fabry-Perot sensors for strain metrology,” Smart Material Structures 8, 549–553 (1999).

Stewart, G.

B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection-from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
[Crossref]

G. Stewart, C. Tandy, D. Moodie, M. A. Morante, and F. Dong, “Design of a fibre optic multi-point sensor for gas detection,” Sens. Actuators B 51, 227–232 (1998).
[Crossref]

Tandy, C.

G. Stewart, C. Tandy, D. Moodie, M. A. Morante, and F. Dong, “Design of a fibre optic multi-point sensor for gas detection,” Sens. Actuators B 51, 227–232 (1998).
[Crossref]

B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection-from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
[Crossref]

Tausz, A.

Tian, J.

M. Han, Y. Lu, and J. Tian, “Fiber-optic temperature sensor using a Fabry-Perot cavity filled with gas of variable pressure,” IEEE Photon. Technol. Lett. 26, 757–760 (2014).
[Crossref]

Tuck, C. J.

M. Singh, C. J. Tuck, and G. F. Fernando, “Multiplexed optical fiber Fabry-Perot sensors for strain metrology,” Smart Material Structures 8, 549–553 (1999).

Wang, A. B.

Wang, C.

Wang, D.

Y. Zhao, D. Wang, and R. Lv, “A novel optical fiber temperature sensor based on Fabry-Perot cavity,” Microwave Opt. Technol. Lett. 55, 2487–2490 (2013).

Wang, P. P.

Wang, Q. P.

Yao, Q.

H. Lin, L. Ma, Z. Hu, Q. Yao, and Y. Hu, “Multiple reflections induced crosstalk in inline TDM fiber Fabry-Perot sensor system utilizing phase generated carrier scheme,” J. Lightwave Technol. 31, 2651–2658 (2013).

S. Niu, Y. Liao, Q. Yao, and Y. Hu, “Resolution and sensitivity enhancements in strong grating based fiber Fabry-Perot interferometric sensor system utilizing multiple reflection beams,” Opt. Commun. 285, 2826–2831 (2012).
[Crossref]

Ye, F.

F. Ye, Y. W. Zhang, B. Qi, and L. Qian, “Frequency-shifted interferometry—a versatile fiber-optic sensing technique,” Sensors 14, 10977–11000 (2014).

F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing using frequency-shifted interferometry,” J. Lightwave Technol. 27, 5356–5364 (2009).
[Crossref]

F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber Bragg grating array,” IEEE Photon. Technol. Lett. 20, 1488–1490 (2008).
[Crossref]

F. Ye, “Frequency-shifted interferometry for fiber-optic sensing,” Ph.D. dissertation (University of Toronto, 2013).

Yuan, X.

J. Zhao, Y. Shi, N. Shan, and X. Yuan, “Stabilized fiber-optic extrinsic Fabry-Perot sensor system for acoustic emission measurement,” Opt. Laser Technol. 40, 874–880 (2008).
[Crossref]

Zhang, X.

Z. Shen, J. Zhao, and X. Zhang, “Frequency-division multiplexing technique of fiber grating Fabry-Perot sensors,” Acta Opt. Sin. 27, 1173–1177 (2007) (in Chinese).

Zhang, Y. W.

F. Ye, Y. W. Zhang, B. Qi, and L. Qian, “Frequency-shifted interferometry—a versatile fiber-optic sensing technique,” Sensors 14, 10977–11000 (2014).

Zhao, J.

J. Zhao, Y. Shi, N. Shan, and X. Yuan, “Stabilized fiber-optic extrinsic Fabry-Perot sensor system for acoustic emission measurement,” Opt. Laser Technol. 40, 874–880 (2008).
[Crossref]

Z. Shen, J. Zhao, and X. Zhang, “Frequency-division multiplexing technique of fiber grating Fabry-Perot sensors,” Acta Opt. Sin. 27, 1173–1177 (2007) (in Chinese).

Zhao, Y.

Y. Zhao, D. Wang, and R. Lv, “A novel optical fiber temperature sensor based on Fabry-Perot cavity,” Microwave Opt. Technol. Lett. 55, 2487–2490 (2013).

Zhao, Y. J.

Acta Opt. Sin. (1)

Z. Shen, J. Zhao, and X. Zhang, “Frequency-division multiplexing technique of fiber grating Fabry-Perot sensors,” Acta Opt. Sin. 27, 1173–1177 (2007) (in Chinese).

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (2)

F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber Bragg grating array,” IEEE Photon. Technol. Lett. 20, 1488–1490 (2008).
[Crossref]

M. Han, Y. Lu, and J. Tian, “Fiber-optic temperature sensor using a Fabry-Perot cavity filled with gas of variable pressure,” IEEE Photon. Technol. Lett. 26, 757–760 (2014).
[Crossref]

J. Lightwave Technol. (2)

H. Lin, L. Ma, Z. Hu, Q. Yao, and Y. Hu, “Multiple reflections induced crosstalk in inline TDM fiber Fabry-Perot sensor system utilizing phase generated carrier scheme,” J. Lightwave Technol. 31, 2651–2658 (2013).

F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing using frequency-shifted interferometry,” J. Lightwave Technol. 27, 5356–5364 (2009).
[Crossref]

J. Phys. (1)

Z. Guo, W. Li, and T. Liu, “Optical fiber ultrasonic sensor networks based on WDM and TDM,” J. Phys. 276, 1–6 (2011).

Meas. Sci. Technol. (1)

S. C. Kaddu, S. F. Collins, and D. J. Booth, “Multiplexed intrinsic optical fibre Fabry-Perot temperature and strain sensors addressed using white light interferometry,” Meas. Sci. Technol. 10, 416–420 (1999).
[Crossref]

Microwave Opt. Technol. Lett. (1)

Y. Zhao, D. Wang, and R. Lv, “A novel optical fiber temperature sensor based on Fabry-Perot cavity,” Microwave Opt. Technol. Lett. 55, 2487–2490 (2013).

Opt. Commun. (1)

S. Niu, Y. Liao, Q. Yao, and Y. Hu, “Resolution and sensitivity enhancements in strong grating based fiber Fabry-Perot interferometric sensor system utilizing multiple reflection beams,” Opt. Commun. 285, 2826–2831 (2012).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

J. Zhao, Y. Shi, N. Shan, and X. Yuan, “Stabilized fiber-optic extrinsic Fabry-Perot sensor system for acoustic emission measurement,” Opt. Laser Technol. 40, 874–880 (2008).
[Crossref]

Opt. Lett. (1)

Sens. Actuators B (2)

G. Stewart, C. Tandy, D. Moodie, M. A. Morante, and F. Dong, “Design of a fibre optic multi-point sensor for gas detection,” Sens. Actuators B 51, 227–232 (1998).
[Crossref]

B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fibre optic techniques for remote spectroscopic methane detection-from concept to system realization,” Sens. Actuators B 51, 25–37 (1998).
[Crossref]

Sensors (1)

F. Ye, Y. W. Zhang, B. Qi, and L. Qian, “Frequency-shifted interferometry—a versatile fiber-optic sensing technique,” Sensors 14, 10977–11000 (2014).

Smart Material Structures (1)

M. Singh, C. J. Tuck, and G. F. Fernando, “Multiplexed optical fiber Fabry-Perot sensors for strain metrology,” Smart Material Structures 8, 549–553 (1999).

Other (2)

F. Ye, “Frequency-shifted interferometry for fiber-optic sensing,” Ph.D. dissertation (University of Toronto, 2013).

F. Shen, “UV-induced intrinsic Fabry-Perot interferometric fiber sensors and their multiplexing for quasi-distributed temperature and strain sensing,” Ph.D. dissertation (Virginia Polytechnic Institute and State University, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic diagram of the hybrid multiplexing system for fiber-optic F-P sensors based on frequency-shifted interferometry. TLS, tunable laser source; Cir, circulator; BD, balanced detector; C1 and C2, 3 dB couplers; AOM, acousto-optic modulator; F-Pmn, nth fiber-optic F-P sensor of the mth channel of sensor links.
Fig. 2.
Fig. 2. FFT spectrum on a sampled signal at 1580.036 nm.
Fig. 3.
Fig. 3. F-P sensors’ multiplexed reflection spectra before loading strain: (a) direct FSI measurement result and (b) OSA measurement result.
Fig. 4.
Fig. 4. Comparison of the reflection spectrum measured by OSA and that by FSI.
Fig. 5.
Fig. 5. Comparison of the reflection spectra of the four F-P sensors measured in State1 and those in State2. (a) F-P11, (b) F-P12, (c) F-P21, and (d) F-P22. State1 denotes the system state before loading strain on F-P22; State2 denotes the system state after loading strain on F-P22.
Fig. 6.
Fig. 6. Crosstalk as a function of sensor separation under three window functions using the experimental parameters in two system states: (a) no noise and (b) with noise.
Fig. 7.
Fig. 7. FFT spectrum of two F-P sensors at the separation 40 m using the experimental parameters in two system states: (a) without noise and (b) with noise.
Fig. 8.
Fig. 8. Comparison of the sensor number and the maximum SNR of a two-channel hybrid system as a function of sensor separation for several source powers at 1580.036 nm and those of a serial system. SN, sensor number multiplexed by a serial system; HN, sensor number multiplexed by a two-channel hybrid system; MFSNR, maximum frequency-domain SNR.

Tables (1)

Tables Icon

Table 1. Cavity Lengths and Cavity-Length Shifts of the Four F-P Sensors

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Im(λ,f)=n=1NAKmn(λ)I0cos(4πn(L0+Lmnf)c),
A=4κAκBγ1γ2(1γ1)(1γ2)·10αo10,
Kmn(λ)={(Πi=1n1(1Rmi(λ))2)·Πi=1n110αf·2lmi10}10αf·2lmn10Rmn(λ),
Itotal(λ,f)=m=1MIm(λ,f)=m=1Mn=1NAKmn(λ)I0cos(4πn(L0+Lmnf)c).
Lmn=ctsw2nΔfFmnL0,
Itotal(λ,f)=AK11(λ)I0cos(4πn(L0+L11)fc)+AK12(λ)I0cos(4πn(L0+L12)fc)+AK21(λ)I0cos(4πn(L0+L21)fc)+AK22(λ)I0cos(4πn(L0+L22)fc),

Metrics