Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High efficiency, linearly polarized, directly diode-pumped Er:YAG laser at 1617 nm

Not Accessible

Your library or personal account may give you access

Abstract

An efficient, directly diode-pumped Er:YAG laser at 1617 nm was demonstrated. A folding mirror with high reflectivity for the s-polarized light at the laser wavelength was used to achieve a linearly polarized laser. A maximum continuous-wave output power of 7.73 W was yielded under incident pump power of 50.57 W, and the optical conversion efficiency with respect to incident pump power was 15.28%, which was the highest optical conversion efficiency with directly diode-pumped Er:YAG lasers up to now; in Q-switched operation, the maximum pulse energy of 7.82 mJ was generated with pulse duration of about 80 ns at a pulse repetition frequency of 500 Hz.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
In-band pumped polarized, narrow-linewidth Er:YAG laser at 1645  nm

Mingjian Wang, Junqing Meng, Xia Hou, and Weibiao Chen
Appl. Opt. 53(30) 7153-7156 (2014)

Resonantly pumped acousto-optic Q-switched Er:YAG lasers at 1617 and 1645  nm

Ran Wang, Qing Ye, and Chunqing Gao
Appl. Opt. 53(10) 2093-2096 (2014)

High-power in-band pumped Er:YAG laser at 1617 nm

J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson
Opt. Express 16(8) 5807-5812 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved