Abstract

Effective coatings improve the performance of any device designed to emit or collect light over a range of angles and wavelengths. Improved broadband and wide angle antireflection coatings (ARCs) are a simple and direct way to improve solar cell performance. In this paper we demonstrate a multilayered ARC optimized using a new meta-heuristic algorithm called the average uniform algorithm (AUA). Comparison between the well-known genetic algorithm and the AUA showed that both achieved similar results but the AUA converged much faster. The coating optimized by AUA for broadband and wide-angle emission is applied to a copper zinc tin sulfide based thin film solar cell by co-sputtering of high and low refractive index material. A significant improvement in efficiency was observed over wide angle and bandwidth with a typical improvement of 15% over the uncoated solar cell. This AUA methodology is proven to be an efficient method for design of general ARCs.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm

Martin F. Schubert, Frank W. Mont, Sameer Chhajed, David J. Poxson, Jong Kyu Kim, and E. Fred Schubert
Opt. Express 16(8) 5290-5298 (2008)

Optimal structure of light trapping in thin-film solar cells: dielectric nanoparticles or multilayer antireflection coatings?

Yongxiang Zhao, Fei Chen, Qiang Shen, and Lianmeng Zhang
Appl. Opt. 53(23) 5222-5229 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription