Abstract

This paper investigates the removal characteristics of the multigesture jetting of magnetorheological jet polishing (MJP). It discusses four main jetting models that satisfy precise polishing, which are complemented by an integrated polishing tool. Based on fluid impact dynamics theory, the paper analyzes the characteristics of abrasives in flowing slurry, such as velocities and stresses, during impinging. Together with the material removal mechanism, the paper establishes mathematical models for material removal for different jetting gestures. Experiments conducted on K9 optical glasses indicate that the actual polishing spots are consistent with the theoretical models. The removal capabilities of each jetting model have been investigated, including removal shape, power spectral density, removal track, and surface roughness. Using the tilted and rotating jetting models, a unimodal footprint could be obtained. The experiments also concluded that the tilted jetting model has a high removal capability and oblique jetting allowed us to easily obtain low-surface roughness, 1.46 nm for a 45° incident angle.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Removal of millimeter-scale rolled edges using bevel-cut-like tool influence function in magnetorheological jet polishing

Hao Yang, Haobo Cheng, Yunpeng Feng, and Xiaoli Jing
Appl. Opt. 57(13) 3377-3384 (2018)

Multiplex path for magnetorheological jet polishing with vertical impinging

Tan Wang, Haobo Cheng, Yong Chen, and Honyuen Tam
Appl. Opt. 53(10) 2012-2019 (2014)

Strategy of restraining ripple error on surface for optical fabrication

Tan Wang, Haobo Cheng, Yunpeng Feng, and Honyuen Tam
Appl. Opt. 53(26) 6058-6065 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription