Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Triangular-core large-mode-area photonic crystal fiber with low bending loss for high power applications

Not Accessible

Your library or personal account may give you access

Abstract

A triangular-core large-mode-area photonic crystal fiber structure has been designed with lower bending loss. The design works on the principle of bend induced mode filtering. Effects of the design parameters have been numerically investigated using the full vectorial finite-element method. In order to improve the effective mode area of fundamental mode along with the differential bending loss, five down-doped material rods have been introduced in place of five air holes in cladding. The structure supports effective mode-area of fundamental mode as large as 794μm2 with nominal bend loss of 0.064dB/m at bend radius of 15 cm. This structure is able to suppress all unwanted nonlinear effects and can be a potential candidate for designing compact high power delivery devices.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Asymmetric large-mode-area photonic crystal fiber structure with effective single-mode operation: design and analysis

Than Singh Saini, Ajeet Kumar, and Ravindra Kumar Sinha
Appl. Opt. 55(9) 2306-2311 (2016)

Bend-resistant large-mode-area photonic crystal fiber with a triangular-core

Xin Wang, Shuqin Lou, and Wenliang Lu
Appl. Opt. 52(18) 4323-4328 (2013)

Rectangular-core large-mode-area photonic crystal fiber for high power applications: design and analysis

Reena, Than Singh Saini, Ajeet Kumar, Yogita Kalra, and Ravindra Kumar Sinha
Appl. Opt. 55(15) 4095-4100 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved