Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Parametric formulation of the dielectric function of palladium and palladium hydride thin films

Not Accessible

Your library or personal account may give you access

Abstract

A parametric description of the dielectric function of Pd thin films with thicknesses between 10 and 30 nm is reported. These films were grown at room temperature on amorphous quartz substrates by electron beam evaporation, with a base pressure of 7.0×107mbar. By using nonpolarized normal incident light, transmission spectra were measured for wavelengths between 240 and 1050 nm. Inversion of the spectra by means of a projected gradient method enables us to obtain the mean dielectric function of the Pd grains in the films. We follow the Brendel–Bormann model to describe the frequency dependence of the dielectric function, with the plasma frequency, collision frequency, and screening factor as parameters in the free electron term. The contributions of bound electrons and their interband transitions, described in terms of Lorentz oscillators, involve the resonance frequencies, decay times, strengths, and Gaussian widths as parameters of the model. All these parameters have been optimized from the Pd grains’ dielectric function, which fits the transmission spectra. A similar procedure was followed for Pd films exposed to a hydrogen atmosphere close to one bar. Thus, the dielectric functions of palladium and palladium hydride can easily be calculated through spectral ranges covering near-ultraviolet, visible, and near-infrared wavelengths. This can be used to model the behavior of nano-sized structures in which palladium particles or thin films are exposed to hydrogen pressures close to one bar.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Ellipsometric study of dielectric functions of Mg1−yCayHx thin films (0.03≤y≤0.17)

Yasusei Yamada, Kazuki Tajima, Masahisa Okada, Masato Tazawa, Arne Roos, and Kazuki Yoshimura
Appl. Opt. 50(21) 3879-3884 (2011)

Optical properties of tungsten trioxide, palladium, and platinum thin films for functional nanostructures engineering

Daria P. Kulikova, Alina A. Dobronosova, Vladimir V. Kornienko, Igor A. Nechepurenko, Aleksandr S. Baburin, Evgeny V. Sergeev, Evgeniy S. Lotkov, Ilya A. Rodionov, Alexander V. Baryshev, and Alexander V. Dorofeenko
Opt. Express 28(21) 32049-32060 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved