## Abstract

In a previous paper, there were three errors or unclear statements. This erratum corrects them.

© 2014 Optical Society of America

• View by:
• |
• |
• |

### Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

### Equations (8)

$( ( E i p + E r p ) cos θ 1 n 1 ( E i p − E r p ) ( E i s + E r s ) ( E i s − E r s ) n 1 cos θ 1 ) = T ( E t p cos θ 3 n 3 E t p E t s E t s n 3 cos θ 3 )$
$α = ( t 11 cos θ 3 + t 12 n 3 ) / cos θ 1 β = ( t 13 + t 14 n 3 cos θ 3 ) / cos θ 1 γ = ( t 21 cos θ 3 + t 22 n 3 ) / n 1 δ = ( t 23 + t 24 n 3 cos θ 3 ) / n 1 η = ( t 31 cos θ 3 + t 32 n 3 ) κ = ( t 33 + t 34 n 3 cos θ 3 ) ρ = ( t 41 cos θ 3 + t 42 n 3 ) / ( n 1 cos θ 1 ) σ = ( t 43 + t 44 n 3 cos θ 3 ) / ( n 1 cos θ 1 ) Γ = [ ( α + γ ) ( κ + σ ) − ( β + δ ) ( η + ρ ) ] − 1 .$
$Ψ = ( ( ϵ − 1 ) x x ′ 0 ( ϵ − 1 ) x y ′ 0 0 1 0 0 ( ϵ − 1 ) y x ′ 0 ( ϵ − 1 ) y y ′ 0 0 0 0 1 ) ,$
$Λ I = Ψ Φ I ( Ψ Φ I P ) − 1 Λ II = T Λ II T = Ψ Φ I P − 1 Φ I − 1 Ψ − 1 .$
$D r ′ II ′ = | D r ′ II ′ | ( D ^ t I ′ ( x ) , D ^ t I ′ ( y ) , − D ^ t I ′ ( z ) ) D r ′ II ′ ′ = | D r ′ II ′ ′ | ( D ^ t I ′ ′ ( x ) , D ^ t I ′ ′ ( y ) , − D ^ t I ′ ′ ( z ) ) H r ′ II ′ = 1 n ′ | D r ′ II ′ | ( − H ^ t I ′ ( x ) , − H ^ t I ′ ( y ) , H ^ t I ′ ( z ) ) H r ′ II ′ ′ = 1 n ′ ′ | D r ′ II ′ ′ | ( − H ^ t I ′ ′ ( x ) , − H ^ t I ′ ′ ( y ) , H ^ t I ′ ′ ( z ) )$
$Φ I = ( D ^ t I ′ ( x ) D ^ t I ′ ′ ( x ) D ^ t I ′ ( x ) D ^ t I ′ ′ ( x ) 1 n ′ H ^ t I ′ ( y ) 1 n ′ ′ H ^ t I ′ ′ ( y ) − 1 n ′ H ^ t I ′ ( y ) − 1 n ′ ′ H ^ t I ′ ′ ( y ) D ^ t I ′ ( y ) D ^ t I ′ ′ ( y ) D ^ t I ′ ( y ) D ^ t I ′ ′ ( y ) − 1 n ′ H ^ t I ′ ( x ) − 1 n ′ ′ H ^ t I ′ ′ ( x ) 1 n ′ H ^ t I ′ ( x ) 1 n ′ ′ H ^ t I ′ ′ ( x ) ) .$
$( 1 / n ′ ′ ) 2 = cos ψ / n o 2 + sin ψ / n e 2 = ( 1 / n e ) 2 + ( n o − 2 − n e − 2 ) sin 2 θ ′ ′ cos 2 χ$
$n ′ ′ = n e 1 + ( n e − 2 − n o − 2 ) n 1 2 sin 2 θ 1 cos 2 χ ,$