Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Use of signal decomposition to compensate for respiratory disturbance in mainstream capnometer

Not Accessible

Your library or personal account may give you access

Abstract

End-tidal carbon dioxide (PETCO2) monitoring has become an important tool in clinical monitoring, but there are still limitations in practice. Low-frequency modulation was used to reliably acquire respiratory information. Then the disturbances of humidity and flow rate were removed by signal decomposition. Finally, the real-time concentration of CO2 was calculated and displayed by an adjusted calibration function. Targeted experiments confirm that a period of 180 ms and a depth of 50% was the optimal choice. In this case, the effects of humidity and flow rate reflected by different components were removed effectively from the capnography. This capnometer obtains capnography with excellent accuracy and stability in long-term continuous monitoring.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Non-invasive respiratory monitoring using long-period fiber grating sensors

M. D. Petrović, J. Petrovic, A. Daničić, M. Vukčević, B. Bojović, Lj. Hadžievski, T. Allsop, G. Lloyd, and D. J. Webb
Biomed. Opt. Express 5(4) 1136-1144 (2014)

Wearable respiration monitoring using an in-line few-mode fiber Mach-Zehnder interferometric sensor

Ruihang Wang, Jing Zhao, Ye Sun, Hui Yu, Ning Zhou, Hongxia Zhang, and Dagong Jia
Biomed. Opt. Express 11(1) 316-329 (2020)

Quantum cascade laser absorption sensor for carbon monoxide in high-pressure gases using wavelength modulation spectroscopy

R. M. Spearrin, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson
Appl. Opt. 53(9) 1938-1946 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved