Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Watt-level passively Q-switched double-cladding fiber laser based on graphene oxide saturable absorber

Not Accessible

Your library or personal account may give you access

Abstract

A watt-level passively Q-switched ytterbium-doped double-cladding fiber laser with a graphene oxide (GO) absorber was demonstrated. The structure of the GO saturable absorber mirror (GO-SAM) was of the sandwich type. A maximum output power of 1.8 W was obtained around a wavelength of 1044 nm. To the best of our knowledge, this is the highest output power in Q-switched fiber lasers based on a GO saturable absorber. The pure GO was protected from the oxygen in the air so that the damage threshold of the GO-SAM was effectively raised. The gain fiber was a D-shaped ytterbium-doped double-cladding fiber. The pulse repetition rates were tuned from 120 to 215 kHz with pump powers from 3.89 to 7.8 W. The maximum pulse energy was 8.37 μJ at a pulse width of 1.7 μs.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
High-energy passively Q-switched 2 μm Tm3+-doped double-clad fiber laser using graphene-oxide-deposited fiber taper

Chun Liu, Chenchun Ye, Zhengqian Luo, Huihui Cheng, Duanduan Wu, Yonglong Zheng, Zhen Liu, and Biao Qu
Opt. Express 21(1) 204-209 (2013)

Photonic crystal fiber based dual-wavelength Q-switched fiber laser using graphene oxide as a saturable absorber

H. Ahmad, M. R. K. Soltanian, C. H. Pua, M. Alimadad, and S. W. Harun
Appl. Opt. 53(16) 3581-3586 (2014)

Large-energy, wavelength-tunable, all-fiber passively Q-switched Er:Yb-codoped double-clad fiber laser with mono-layer chemical vapor deposition graphene

Duanduan Wu, Fengfu Xiong, Cankun Zhang, Shanshan Chen, Huiying Xu, Zhiping Cai, Weiwei Cai, Kaijun Che, and Zhengqian Luo
Appl. Opt. 53(19) 4089-4093 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.