Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Sensing self-assembled alkanethiols by differential transmission interrogation with terahertz metamaterials

Not Accessible

Your library or personal account may give you access

Abstract

Surface-enhanced electromagnetic response in the resonant regions of split-ring resonators offers a sensitive way to probe the surface dipoles formed by alkanethiol molecules with a terahertz wave by a differential transmission (DT) interrogation method. The DT signal mainly comes from the interaction between alkanethiols and metamaterials by electron transfer and/or the variation of the dielectric constant. The Lorentz model is used to demonstrate the principle of DT interrogation theoretically, which suggests the variation of both frequency and damping of resonance can be captured cooperatively. This method has been employed to experimentally demonstrate the sensing feasibility for the chain length dependence of the alkanethiol molecules. Numerical simulations confirm that the enhancement is large at the gap and corner regions of this kind of metamaterials.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations

John F. O’Hara, Ranjan Singh, Igal Brener, Evgenya Smirnova, Jiaguang Han, Antoinette J. Taylor, and Weili Zhang
Opt. Express 16(3) 1786-1795 (2008)

Increasing the sensitivity of terahertz split ring resonator metamaterials for dielectric sensing by localized substrate etching

K. Meng, S. J. Park, A. D. Burnett, T. Gill, C. D. Wood, M. Rosamond, L. H. Li, L. Chen, D. R. Bacon, J. R. Freeman, P. Dean, Y. H. Ahn, E. H. Linfield, A. G. Davies, and J. E. Cunningham
Opt. Express 27(16) 23164-23172 (2019)

Metamaterial-enhanced terahertz vibrational spectroscopy for thin film detection

Jingya Xie, Xi Zhu, Xiaofei Zang, Qingqing Cheng, Lin Chen, and Yiming Zhu
Opt. Mater. Express 8(1) 128-135 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved