Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Measurement of nonuniform temperature and concentration distributions by combining line-of-sight tunable diode laser absorption spectroscopy with regularization methods

Not Accessible

Your library or personal account may give you access

Abstract

Regularization methods were combined with line-of-sight tunable diode laser absorption spectroscopy (TDLAS) to measure nonuniform temperature and concentration distributions along the laser path when a priori information of the temperature distribution tendency is available. Relying on measurements of 12 absorption transitions of water vapor from 1300 to 1350 nm, the nonuniform temperature and concentration distributions were retrieved by making the use of nonlinear and linear regularization methods, respectively. To examine the effectiveness of regularization methods, a simulated annealing algorithm for nonlinear regularization was implemented to reconstruct the temperature distribution, while three linear regularization methods, namely truncated singular value decomposition, Tikhonov regularization, and a revised Tikhonov regularization method, were implemented to retrieve the concentration distribution. The results show that regularization methods not only can be used to retrieve temperature and concentration distributions closer to the original but also are less sensitive to measurement noise. When no sufficient optical access is available for TDLAS tomography, the methods proposed in the paper can be used to obtain more details of the combustion field with higher accuracy and robustness, which are expected to play a more important role in combustion diagnosis.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Tomographic laser absorption spectroscopy using Tikhonov regularization

Avishek Guha and Ingmar Schoegl
Appl. Opt. 53(34) 8095-8103 (2014)

Diode-laser absorption sensor for line-of-sight gas temperature distributions

Scott T. Sanders, Jian Wang, Jay B. Jeffries, and Ronald K. Hanson
Appl. Opt. 40(24) 4404-4415 (2001)

Two-color absorption spectroscopy strategy for measuring the column density and path average temperature of the absorbing species in nonuniform gases

Christopher S. Goldenstein, Ian A. Schultz, Jay B. Jeffries, and Ronald K. Hanson
Appl. Opt. 52(33) 7950-7962 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (28)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.