Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Effects of salinity, temperature, and polarization on top of atmosphere and water leaving radiances for case 1 waters

Not Accessible

Your library or personal account may give you access

Abstract

The effects of polarization, sea water salinity, and temperature on top of atmosphere radiances and water leaving radiances (WLRs) are discussed using radiative transfer simulations for MEdium resolution imaging spectrometer (MERIS) channels from 412 to 900 nm. A coupled system of an aerosol-free atmosphere and an ocean bulk containing chlorophyll and colored dissolved organic matter (CDOM) (case 1 waters) was simulated. A simple, but realistic, bio-optical model was set up to relate chlorophyll concentration and wavelength to scattering matrices and absorption coefficients for chlorophyll and colored CDOM. The model of the optical properties of the sea water accounts for the salinity, temperature, and wavelength dependence of the relative refractive index, as well as the absorption and the bulk scattering coefficient. The results show that the relative difference of WLRs at zenith for a salinity of 5 practical salinity units (PSUs) and 35 PSU can reach values of 16% in the 412 nm channel, decreasing to 4% in the 900 nm channel. For the more realistic case of 25 PSU compared to 35 PSU, the effect is reduced to 5% for the 412 nm channel and decreasing to 2% for the 900 nm channel. The effect on radiance caused by changing sea water temperature is dominated by changes of sea water absorption and shows strong spectral features. For WLRs, a change of 10°C can cause relative changes of above 3%. The effects of neglecting polarization in the radiative transfer depends strongly on direction and wavelength, and can reach values of ±8% for the 412 nm channel. The effect is discussed for MERIS channels, viewing geometry, and chlorophyll content.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Accurate and self-consistent ocean color algorithm: simultaneous retrieval of aerosol optical properties and chlorophyll concentrations

Knut Stamnes, Wei Li, Banghua Yan, Hans Eide, Andrew Barnard, W. Scott Pegau, and Jakob J. Stamnes
Appl. Opt. 42(6) 939-951 (2003)

Polarization impacts on the water-leaving radiance retrieval from above-water radiometric measurements

Tristan Harmel, Alexander Gilerson, Alberto Tonizzo, Jacek Chowdhary, Alan Weidemann, Robert Arnone, and Sam Ahmed
Appl. Opt. 51(35) 8324-8340 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (18)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved