Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Dual-grating confocal-rainbow volume holographic imaging system designs for high depth resolution

Not Accessible

Your library or personal account may give you access

Abstract

Confocal microscopy rejects out-of-focus light from the object by scanning a pinhole through the image and reconstructing the image point by point. Volume holographic imaging systems with bright-field illumination have been proposed as an alternative to conventional confocal-type microscopes that does not require scanning of a pinhole or a slit. However, due to wavelength-position degeneracy of the hologram, the high Bragg selectivity of the volume hologram is not utilized and system performance is not optimized. Confocal-rainbow illumination has been proposed as a means to remove the degeneracy and improve optical sectioning in these systems. In prior work, two versions of this system were illustrated: the first version had a separate illumination and imaging grating and the second used a single grating to disperse the incident light and to separate wavelengths in the imaging path. The initial illustration of the dual-grating system has limited depth resolution due to the low selectivity of the illumination grating. The initial illustration of the single-grating system has high depth resolution but does not allow optimization of the illumination path and requires high optical quality of the holographic filters. In this paper we consider the design and tolerance requirements of the dual-grating system for high depth resolution and demonstrate the results with an experimental system. An experimental system with two 1.8 mm thick planar holograms achieved a depth resolution of 7 μm with a field of view of 1.9 mm and a hologram dispersion matching tolerance of ±0.008°.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Confocal-rainbow volume holographic imaging system

Jose M. Castro, Paul J. Gelsinger-Austin, Jennifer K. Barton, and Raymond K. Kostuk
Appl. Opt. 50(10) 1382-1388 (2011)

Spatial–spectral volume holographic systems: resolution dependence on effective thickness

Jose M. Castro, John Brownlee, Yuan Luo, Erich de Leon, Jennifer K. Barton, George Barbastathis, and Raymond K. Kostuk
Appl. Opt. 50(7) 1038-1046 (2011)

Analysis of diffracted image patterns from volume holographic imaging systems and applications to image processing

Jose M. Castro, Erich de Leon, Jennifer K. Barton, and Raymond K. Kostuk
Appl. Opt. 50(2) 170-176 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved