Abstract

We show that a system of glass disks compressed along their diameters enables one to induce a doubly charged vortex beam in the emergent light when the incident light is circularly polarized. Using such a disk system, one can control the efficiency of conversion of the spin angular momentum to the orbital angular momentum by a loading force. The consideration presented here can be extended for the case of crystalline materials with high optical damage thresholds in order to induce high-power vortex beams.

©2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid generation and analysis of vector vortex beams

Sandra Mamani, Ethan Bendau, Jeff Secor, Solyman Ashrafi, Jiufeng J. Tu, and Robert R. Alfano
Appl. Opt. 56(8) 2171-2175 (2017)

Spin-to-orbital angular momentum conversion in dielectric metasurfaces

Robert Charles Devlin, Antonio Ambrosio, Daniel Wintz, Stefano Luigi Oscurato, Alexander Yutong Zhu, Mohammadreza Khorasaninejad, Jaewon Oh, Pasqualino Maddalena, and Federico Capasso
Opt. Express 25(1) 377-393 (2017)

Optical vortex induction via light–matter interaction in liquid-crystal media

R. Barboza, U. Bortolozzo, M. G. Clerc, S. Residori, and E. Vidal-Henriquez
Adv. Opt. Photon. 7(3) 635-683 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription