Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Attenuation of an electromagnetic wave by charged dust particles in a sandstorm

Not Accessible

Your library or personal account may give you access

Abstract

We calculate the light scattering properties of the partially charged dust particles with the Mie theory for electromagnetic waves with different frequencies, and the attenuation coefficients of an electromagnetic wave propagating in a sandstorm are also calculated. The results show that the electric charges distributed on the sand surface have a significant effect on the attenuation of the electromagnetic wave, especially for a frequency lower than 40GHz, and attenuation coefficients increase with the magnitude of charges carried by the dust particles (expressed by the charge-to-mass ratio in this paper). For the higher frequency electromagnetic wave, such as visible light, the effect of charges carried by sand particles on its attenuation is very little, which can be ignored.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Rayleigh approximation for the scattering of small partially charged sand particles

Xingcai Li, Xing Min, and Dandan Liu
J. Opt. Soc. Am. A 31(7) 1495-1501 (2014)

Scattering phase function of a charged spherical particle

QinJian Hu and L. Xie
Appl. Opt. 54(28) 8439-8443 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.