Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Amplified spontaneous emission from an Ag-backed red-fluorescent-dye-doped polymer film

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate that the amplified spontaneous emission (ASE) in an Ag-backed red-fluorescent-dye-doped polymer film can be controlled by the effect of the film thickness. Optical losses associated with the metallic contacts necessary for charge injection, an obstacle to the development of an electrically pumped organic solid-state laser, may be possible to be reduced by increasing the gain medium layer thickness. The study of ASE characteristics of Ag-backed 4-(Dicyanomethylene)-2-t-butyl-6-(1,1,7,7- tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB)-doped polystyrene (PS) films with different thicknesses shows that increasing the film thickness can reduce the influence of the Ag layer. The threshold, gain, and loss of the device with a thickness of 800nm are comparable to those of a metal-free device. Our findings demonstrate that the Ag-backed DCJTB:PS film can still be a good organic gain medium material for the fabrication of solid-state lasers, when the thickness of the DCJTB:PS layer increases to an appropriate value.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Amplified spontaneous emission and gain from optically pumped films of dye-doped polymers

Wu Lu, Bo Zhong, and Dongge Ma
Appl. Opt. 43(26) 5074-5078 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved