Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Advanced signal processing methods for pulsed laser vibrometry

Not Accessible

Your library or personal account may give you access

Abstract

Although pulsed coherent laser radar vibrometry has been introduced as an improvement over its continuous wave (CW) counterpart, it remains very sensitive to decorrelation noises, such as speckle, and other disturbances of its measurement. Taking advantage of more polyvalent polypulse waveforms, we address the issue with advanced signal processing. We have conducted what we believe is the first extensive comparison of processing techniques considering CW, pulse-pair, and polypulse emissions. In this framework, we introduce a computationally efficient maximum likelihood estimator and test signal tracking on pseudo-time-frequency representations (TFRs), which, respectively, help deal with speckle noise and fading of the signal in harsh noise conditions. Our comparison on simulated signals is validated on a 1.55μm all-fiber vibrometer experiment with an apparatus simulating vibration and strong speckle noise. Results show the advantage of the estimators that take into account actual noise statistics, and call for a wider use of TFRs to track the vibration-modulated signal.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Fiber-based 1.5 μm lidar vibrometer in pulsed and continuous modes

Christopher A. Hill, Michael Harris, and Kevin D. Ridley
Appl. Opt. 46(20) 4376-4385 (2007)

Laser vibrometry from a moving ground vehicle

Leaf A. Jiang, Marius A. Albota, Robert W. Haupt, Justin G. Chen, and Richard M. Marino
Appl. Opt. 50(15) 2263-2273 (2011)

Lidar frequency modulation vibrometry in the presence of speckle

Christopher A. Hill, Michael Harris, Kevin D. Ridley, Eric Jakeman, and Peter Lutzmann
Appl. Opt. 42(6) 1091-1100 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


    Select Topics Cancel
    © Copyright 2024 | Optica Publishing Group. All Rights Reserved