Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

In-flight spectral performance monitoring of the Airborne Prism Experiment

Not Accessible

Your library or personal account may give you access

Abstract

Spectral performance of an airborne dispersive pushbroom imaging spectrometer cannot be assumed to be stable over a whole flight season given the environmental stresses present during flight. Spectral performance monitoring during flight is commonly accomplished by looking at selected absorption features present in the Sun, atmosphere, or ground, and their stability. The assessment of instrument performance in two different environments, e.g., laboratory and airborne, using precisely the same calibration reference, has not been possible so far. The Airborne Prism Experiment (APEX), an airborne dispersive pushbroom imaging spectrometer, uses an onboard in-flight characterization (IFC) facility, which makes it possible to monitor the sensor’s performance in terms of spectral, radiometric, and geometric stability in flight and in the laboratory. We discuss in detail a new method for the monitoring of spectral instrument performance. The method relies on the monitoring of spectral shifts by comparing instrument-induced movements of absorption features on ground and in flight. Absorption lines originate from spectral filters, which intercept the full field of view (FOV) illuminated using an internal light source. A feature-fitting algorithm is used for the shift estimation based on Pearson’s correlation co efficient. Environmental parameter monitoring, coregistered on board with the image and calibration data, revealed that differential pressure and temperature in the baffle compartment are the main driving parameters explaining the trend in spectral performance deviations in the time and the space (across-track) domains, respectively. The results presented in this paper show that the system in its current setup needs further improvements to reach a stable performance. Findings provided useful guidelines for the instrument revision currently under way. The main aim of the revision is the stabilization of the instrument for a range of temperature and pressure conditions to be encountered during operation.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Performance assessment of onboard and scene-based methods for Airborne Prism Experiment spectral characterization

Petra D’Odorico, Luis Guanter, Michael E. Schaepman, and Daniel Schläpfer
Appl. Opt. 50(24) 4755-4764 (2011)

Impacts of dichroic prism coatings on radiometry of the airborne imaging spectrometer APEX

A. Hueni, D. Schlaepfer, M. Jehle, and M. Schaepman
Appl. Opt. 53(24) 5344-5352 (2014)

Characterization of fine resolution field spectrometers using solar Fraunhofer lines and atmospheric absorption features

Michele Meroni, Lorenzo Busetto, Luis Guanter, Sergio Cogliati, Giovanni Franco Crosta, Mirco Migliavacca, Cinzia Panigada, Micol Rossini, and Roberto Colombo
Appl. Opt. 49(15) 2858-2871 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved