Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Robust wafer identification recognition based on asterisk-shape filter and high–low score comparison method

Not Accessible

Your library or personal account may give you access

Abstract

Wafer identifications (wafer ID) can be used to identify wafers from each other so that wafer processing can be traced easily. Wafer ID recognition is one of the problems of optical character recognition. The process to recognize wafer IDs is similar to that used in recognizing car license-plate characters. However, due to some unique characteristics, such as the irregular space between two characters and the unsuccessive strokes of wafer ID, it will not get a good result to recognize wafer ID by directly utilizing the approaches used in car license-plate character recognition. Wafer ID scratches are engraved by a laser scribe almost along the following four fixed directions: horizontal, vertical, plus 45°, and minus 45° orientations. The closer to the center line of a wafer ID scratch, the higher the gray level will be. These and other characteristics increase the difficulty to recognize the wafer ID. In this paper a wafer ID recognition scheme based on an asterisk-shape filter and a high–low score comparison method is proposed to cope with the serious influence of uneven luminance and make recognition more efficiently. Our proposed approach consists of some processing stages. Especially in the final recognition stage, a template-matching method combined with stroke analysis is used as a recognizing scheme. This is because wafer IDs are composed of Semiconductor Equipment and Materials International (SEMI) standard Arabic numbers and English alphabets, and thus the template ID images are easy to obtain. Furthermore, compared with the approach that requires prior training, such as a support vector machine, which often needs a large amount of training image samples, no prior training is required for our approach. The testing results show that our proposed scheme can efficiently and correctly segment out and recognize the wafer ID with high performance.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Computational integral-imaging reconstruction-based 3-D volumetric target object recognition by using a 3-D reference object

Seung-Cheol Kim, Seok-Chan Park, and Eun-Soo Kim
Appl. Opt. 48(34) H95-H104 (2009)

Shaped silicon wafers obtained by hot plastic deformation: performance evaluation for future astronomical x-ray telescopes

Yuichiro Ezoe, Takayuki Shirata, Ikuyuki Mitsuishi, Manabu Ishida, Kazuhisa Mitsuda, Kohei Morishita, and Kazuo Nakajima
Appl. Opt. 48(19) 3830-3838 (2009)

Target recognition under nonuniform illumination conditions

Victor H. Diaz-Ramirez and Vitaly Kober
Appl. Opt. 48(7) 1408-1418 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (19)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.